Supplementary Material
Bi-directional Distribution Alignment for Transductive Zero-Shot Learning

We present additionally (1) the dataset and implemen-
tation details, (2) the explanation of the feature pre-tuning
network, (3) an examination of different feature spaces, and
(4) the comparison of BBSE and CPE for class prior esti-
mation.

1. Dataset and Implementation
1.1. Dataset

We conduct experiments using four benchmark datasets.
The Animals with Attributes 1&2 (AWAL1 [2] & AWA2
[10]) contain 30,475&37,322 samples from a total of 50
classes, and the dimension of the attribute vector is 85. The
Caltech UCSD Bird 200 (CUB) [8] consists of 11,788 fine-
grained images of 200 bird species with an attribute size of
312. The SUN Scene classification (SUN) [6] dataset has
14,340 samples selectecd from 717 scenes with an attribute
size of 102. More details are shown in Table 1.

Dataset N att.  ste.  [|[VE| (| VHl

AWA1 30475 85 - 40 10
AWA2 37322 85 - 40 10
CUB 11,788 312 1,024 150 50
SUN 14,340 102 - 645 72

Table 1. Statistics of the four datasets. ‘att.’ denotes the attribute
size, ‘stc.” is the dimension of semantic information extracted from
descriptive sentences [7], ||V?|| and || V|| correspond to the num-
bers of the seen and unseen classes, respectively.

Figure | displays the class distribution prior estimated
from the class information of the testing samples from the
unseen classes, i.e., the percentage of the samples contained
by each class, for the four datasets. AWA1 and AWA?2 have
unbalanced class priors, while CUB and SUN have class
priors close to a uniform distribution. AWA?2 has more sam-
ples from those popular classes like ‘horse’ and ‘dolphin’.

1.2. Implementation

In the training of all our modules, we use AdamW opti-
mizer [4] with a learning rate of 0.001 and (51, B2) is set
as (0.5, 0.999). The encoder E, decoder G and regressor
R in Bi-VAEGAN are all two-layer MLPs, in which the
hidden layer output has 4,096 dimensions and the inner ac-
tivation layer is LeakyReLU. The conditional visual critic
D, unconditional visual critic D%, and attribute critic D®
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Figure 1. The unseen class prior computed from test data.

are two-layer MLPs where the output of the last layer is a
scalar, and the WGAN gradient penalty coefficient is set as
10. The level-1 and level-2 trainings proceed alternatively.
We conduct one-step level-1 training for every five steps of
level-2 training to accelerate the training speed. The train-
ing epochs for AWA1, AWA2, CUB, and SUN are set to be
300, 300, 600, and 400, respectively. In the inference stage,
the synthesized feature number of each class are set to be
3000, 3000, 400, and 400 for for AWA1, AWA2, CUB, and
SUN, respectively. The classifier f is a single fully con-
nected (FC) layer and its output dimension is equal to the
number of unseen classes for TZSL or the number of both
seen and unseen classes for generalized TZSL.

The used hyper-parameters for reporting results are r=1
for Lo normalization, A=1, a=1, =10 and y=10, where the
setting of «, v and the WGAN critic training are the same
as TF-VAEGAN [5]. In level-1 training, A is less sensitive
and thus set to 1. Values of r and S are searched within
{1,2,5,---,100} and {0.01,0.1,1, 10, 100}, respectively.
Due to the unavailability of a test split in the datasets, we
report our results on the validation split, consistent with
previous works [5, 9]. For conventional Zero-Shot Learn-
ing (ZSL) and Generalized Zero-Shot Learning (GZSL), a
more rigorous setting is desired, especially under the impact
of current large models.
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Figure 2. The used feature pre-tuning network.

2. Feature Pre-tuning Network
2.1. Used Approach

For the CUB dataset, we pre-tune the pre-trained features
using a supervised neural network of which the architecture
is shown in Figure 2. It builds on an auto-encoder network
(E’ and G”) and consists of two supervised modules that
work in the latent space, acting as a regressor (R’) and a
classifier (CLS). <” denotes it is a different module from
the one in the main text. The input and latent features share
the same feature dimension, i.e., 2,048 for the pre-trained
ResNet-101. Only the seen classes receive supervision from
the two supervised modules. The training objective for fea-
ture pre-tuning is,

min L + L% + L¢
B RrcLs MSETHR T HOLS (D

where

crs(V?) = Eflog(P(y|v*))]. 2

The latent features are extracted by the encoder E’ after
training for 15 epochs for both the seen and unseen classes.
These replace the original visual features to be used as the
input of Bi-VAEGAN.

2.2. Result Comparison

Figures 3 and 4 visualize the tuned and untuned features
for the CUB and AWA?2 datasets, using the visulization tool
t-SNE? . The tuned features exhibit more clear cluster struc-
ture for the cross-domain dataset CUB. It should be noted
that our feature pre-tuning network will not be beneficial
for datasets that already have a satisfactory cluster structure,
and somehow the cluster property could be damaged.

Table 2 demonstrates the effect of feature pre-tuning on
AWA?2 and CUB datasets. We name the simplified model

[ 8
£
3 &
e &
E» »
o ;
& P gy -
1@ oo . BE
. TR I
o o & e .‘
& *

(a) untuned (CUB) (b) pre-tuned (CUB)

Figure 3. Visualization of vanilla and pre-tuned CUB features.

(a) untuned (AWA2) (b) pre-tuned (AWA?2)

Figure 4. Visualization of vanilla and pre-tuned AWA?2 features.

that only contains G, D, and D" as a Simple-GAN. Both
Simple-GAN and Bi-VAEGAN use Lo feature normaliza-
tion. A key observation is that for CUB, feature pre-tuning
introduces a noticeable improvement for both models, i.e.,
+8.8 and +1.2 respectively, when using the less informative
AKI1 knowledge. Notably, Simple-GAN significantly bene-
fits from this straightforward strategy and performs compa-
rably to the untuned Bi-VAEGAN, e.g., 76.9% vs. 76.8%.
This shows that despite the fact that no additional super-

Model AWA?2 CUB™! CUB"**
w/o pre-tuning
Simple-GAN 92.7 68.1 79.8
Bi-VAEGAN 95.8 76.8 82.8
w/ pre-tuning
Simple-GAN  88.9(—3.8) 76.9(+8.8) 80.3 (40.5)
Bi-VAEGAN 90.0 (—5.8) 78.0 (+1.2) 82.0(—0.8)

Table 2. The effect of feature pre-tuning on AWA2 and CUB.
Simple-GAN is a simplified version of Bi-VAEGAN. All perfor-
mances are shown in percentage (%). CUB**! conditions on the
original attribute information (AK1) while CUB*X? conditions on
the semantic embedding (AK?2) extracted from the fine-grained vi-
sual description.



vision (regressor) is applied, the visual feature alignment
for the tuned features is substantially simpler. We could
conclude that the tuned features can lead to a better inter-
class discriminability, which enables an easier alignment
between the auxiliary and visual spaces when the class dis-
tribution prior is known.

Another observation is that Simple-GAN benefits less
from the feature pre-tuneing (4-0.5) when it conditions on
the more informative AK2. Bi-VAEGAN also shows a
small performance drop (—0.8) with the feature pre-tuning.
We could conclude that the pre-tuned features are less ef-
fective when the auxiliary information is already strong
enough. Besides, for the AWA?2 dataset, pre-tuning de-
creases the inter-class discriminability as shown in Figure
4, and a significant performance drop (—3.8, —5.8) is ob-
served. These indicate that feature pre-tuning is not a com-
pletely free-lunch approach and that cross-domain datasets
may benefit more from it. Transductive regressor could
also achieve a competitive knowledge transfer for the cross-
domain dataset. It is easier to provide a better alignment
since it doest not change the original features extracted from
the powerful backbone. Overall, both the transductive re-
gressor method and the feature pre-tuning offer advantages
of their own and may complement one another in complex
real-world circumstances.

3. Feature Augmentation

As a bi-directional distribution alignment technique for
TZSL, our Bi-VAEGAN allows the regressor and generator
to independently solve the TZSL problem. In the inference
phase, we compare the performance of using four different
feature spaces, i.e., attribute space A, hidden space ‘H €
R4096 corresponding to the hidden representation of the
regressor, visual space V' and the augmented multi-modal
space A x H x V. To conduct inference on A, we have
two straightforward choices: (1) Use only the transductively
trained R and infer for the test unseen data R(V") using a
1-nearest neighbor (1-NN) classifier. (2) Use both G and R,
synthesize the labeled unseen set (R(V%), Y&) in attribute
space, train a neural network classifier using the labeled set
that includes the synthesized examples and infer for R(V'*)
using this classifier. A similar method of inference can also
be applied to the hidden space when this option is chosen.

Discussion. Table 3 shows the TZSL top-1 accuracy on
three datasets using different spaces to conduct inference.
The observation could be summarized as, (1) R could be
served as an individual module to conduct TZSL inference,
but it is much less discriminative that G. (2) When using G
to conduct inference, a multi-modal space is preferred and
the rank of spaces’ discriminability is H > V > A. We
attribute the hidden space absorbing the knowledge of both
transductive generator and regressor and the larger dimen-
sionality is also preferred to alleviate the hubness problem.

Module Space AWA2 CUB**' CuB**® SUN
R A 73.2 64.5 450 526

G V 94.2 75.0 81.8  71.8

A 89.8 65.6 673 532

R,G H 95.8 77.2 827  73.8

AxXxHxYV 958 76.8 82.8 74.2

Table 3. TZSL results of Bi-VAEGAN using different feature
spaces.

4. BBSE vs. CPE for Class Prior Estimation
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Figure 5. Training accuracy of Bi-VAEGAN using different ran-
dom seeds when class prior is unknown.

Here we explain the black box shift estimation (BBSE)
[3] approach for class prior estimation. It attempts to
solve the problem in label shift setting [I] and we con-
sider the TZSL problem in a discrete form i.e., y € Y* =
{0,1,2, ..., N,, — 1}. We view our synthesized joint distri-
bution pg (v, y) as the source domain and the unknown joint
distribution p*(v, y) as the target domain. Under the label
shift assumption, i.e., p%(v|y) = p“(v]y), we can approx-
imate the unseen prior via the normalized confusion matrix
Cy.y = p&(gly) of synthesized features, where § = ()
is the predicted label using hypothesis f. Following [3],
when the label shift condition is held and the confusion ma-
trix is invertible, the following equation holds,

ph() = > p@lyp ) = D p&@lyp ),

yeYu yeYu
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(a) AWALI + CPE (T1-91.5%) (b) AWAL (T1-93.9%)

(c) AWA2 + CPE (T1-85.6%) (d) AWA2 (T1-95.8%)

Figure 6. Visualization of real/synthesized unseen visual feature
using Bi-VAEGAN. Left column uses CPE strategy and class prior
is unknown. The right column is trained with given real class prior.
‘o’ means the real feature and ‘+’ means the syntehsized feature.

thus p“(y) is computed as,

') =Y C,ip"(i) )

geEYH

To compute the confusion matrix C' we synthesize two la-
beled unseen set (V& YZ4), and (VE, Y&)o. We train the
hypothesis on one labeled set and compute the confusion
matrix on the other set. Note that as the training process
goes, the confusion matrix tends to be an identity matrix
and the BBSE estimation collapse to p“(y) < p“(3).

Discussion. We display the BBSE and our CPE’s train-
ing accuracy curves on AWAL in Figure 5a and Figure 5b.
It might be observed that BBSE is more vulnerable to seed
selection and that it more readily results in a poor conver-
gence. This observation can be explained as that the label
shift assumption is too strong for prior estimation, so that
the neural network classifier performs more unstably. The
non-parametric K-means technique tends to provide a more
moderate and reliable estimation since CPE avoids directly
employing the black-box neural network classifier and uti-
lizes it as an initialization approximation of the class center
instead.

Figure 6 shows the t-SNE visualizations using CPE when
the class prior is unknown. For the more evenly balanced

AWAL, our CPE provides a satisfactory alignment between
the real and the syntehsized features, and there is only a
minor accuracy gap with the known prior scenario (91.5%
vs. 93.9%). For the more unbalanced AWA?2 dataset, the
domain between the synthesized and real features shifts no-
ticeably, and the performance disparity with the know-prior
scenario increases to (85.6% vs. 95.8%). This supports the
argument of Corollary 3.1 that the class prior is crucial to
the alignment of the conditional distribution for the TZSL.
However, it is still unclear how to proceed with a more ac-
curate class prior estimation when the real prior is highly
unbalanced. Different from the widely studied problems of
covariate shift and label shift in domain adaptation [3, | 1],
the unknown prior TZSL is less well-organized and is more
similar to a cross-modal generalized label shift problem.
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