
Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic
Object Detection

Supplementary Material

Yingjie Wang1 Jiajun Deng2∗ Yao Li1 Jinshui Hu3 Cong Liu3 Yu Zhang1 Jianmin Ji1

Wanli Ouyang4 Yanyong Zhang1∗
1University of Science and Technology of China 2University of Sydney 3iFLYTEK 4Shanghai AI Laboratory

A. Overview
The supplementary document is organized as follows:

• Section B presents the detailed model settings and
training details.

• Section C presents additional qualitative results of two
typical locations of Radar points on objects with dif-
ferent heights.

• Section D depicts the detailed effect of query-based
height feature fusion (QHF) block (Section 4.4 of the
main paper).

• Section E depicts the detailed effect of query-based
BEV feature fusion (QBF) block (Section 4.4 of the
main paper).

• Section F depicts the effect on objects at different
ranges.

• Section H depicts the additional comparison with ex-
isting methods.

B. Model Settings and Training Details
Our implementation is based on the open-sourced code

mmdetection3d [4]. We choose CenterPoint [7] and Point-
Pillars [5] to serve as the baseline for the LiDAR-only de-
tection on nuScenes and ORR datasets, respectively. We
follow the network of PointPillars for the Radar feature
stream. The radius of each ball query is 0.15m. The Man-
hattan distance threshold is set as (2,2) for BEV query. The
final output channels of the PointNet module and the MLP
layer are 32.

Our implementation is based on the open-sourced code
mmdetection3d. We choose CenterPoint and PointPillars
to serve as the baseline for the LiDAR-only detection on
nuScenes and ORR datasets, respectively. We follow the
network of PointPillars for the Radar feature stream. The

radius of each ball query is 0.15m. The Manhattan distance
threshold is set as (2,2) for BEV query. The final output
channels of the PointNet module and the MLP layer are 32.

C. Qualitative Results of Radar Point Loca-
tions on Objects with Different Heights

As mentioned in the main paper, the currently available
Radar is unable to capture the height information. The
height value of a Radar point is assigned as the height of
the ego Radar sensor, which is deployed on the top of the
autonomous vehicle. As a result, Radar points are located
at different part for objects with different heights. We il-
lustrate the location of Radar points on object with differ-
ent heights in Figure 1. This treatment leads to two typical
types of Radar point locations: (1) For cars and motorcycles
whose actual heights are similar to the data-collecting car,
Radar points often fall on the top of their bounding boxes,
and (2) for much taller objects such as trucks and buses,
Radar points instead fall inside of their bounding boxes. As
discussed in the Figure 1 from the main paper, the missing
height information of Radar leads to unstable improvements
for objects with different height.

D. Effect of QHF Block

We further report the mean AP of two dynamic object
groups on nuScenes validation set to illustrate how QHF
block affects the detection performance. As proposed in the
main paper, we group the dynamic objects to (1) similar-
height objects and (2) tall objects according to the Radar
sensor’s height. From Table 1, Method (a) is our LiDAR-
only baseline CenterPoint [7]. Method (b) extends (a) by
simply fusing the Radar feature via R2L fusion, which
achieves 1.9% gain of AP for group (1). We notice that tall
objects in group (2) do not enjoy as much performance gain.
As such, Method (c) enriches Radar data by learning the
corresponding height features from raw LiDAR points via
QHF block, leading to steady AP improvement for both two
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Figure 1. Due to the lack of height information, Radar points may
fall at different locations on an object’s bounding box depending
upon the actual height of the object. The middle part of the figure
is an 2D image from nuScenes dataset [2]; in dotted circles, we
show the 3D ground-truth bounding boxes and Radar points using
MeshLab [3] tool. Best viewed in color.

groups (2.3%/1.3%). It demonstrates that pseudo height in-
formation from QHF plays a more important role in improv-
ing the detection performance of large objects.

E. Effect of QBF Block
We also present the detailed performance gain of QBF

block in Table 1. Method (d) extends (b) by learning
from detailed LiDAR features on the BEV plane to en-
hance Radar features, which achieves +2.3% improvements
in terms of AP for Group 1 and 0.4% for Group 2. The
designed QBF block constructs a more fine-grained Radar
BEV feature for more effective detection, benefiting from
much-detailed clues, e.g. objects at long range or objects
with small sizes. In addition, we can observe that Method
(d) only brings small performance gains on tall objects. We
speculate that this is mainly due to the height missing prob-
lem still exists when using the QBF block alone.

F. Effect of Objects at Different Ranges
Apart from object parameters like heights and velocities,

we also evaluate the improvements of Bi-LRFusion for ob-
jects with different distances compared with the LiDAR-
centric baseline CenterPoint. Table 2 shows the mAP and
mAVE of the LiDAR-only detector and Bi-LRFusion on
the representative car class at different ranges. At the
range closer than 20 m, CenterPoint performs better due to
the precise and dense point cloud from LiDAR data. At
the range farther than 20 m, the performance of our Bi-
LRFusion exceeds the LiDAR-only method with the advan-
tage of a long detection range from Radar data. The re-
sult demonstrates that our LiDAR-Radar fusion framework
is less sensitive to the distance because the LiDAR points

Table 1. The detailed effect of each proposed component in Bi-
LRFusion. We report the mean AP on two typical groups. Group
(1) includes similar-height objects like cars, motorcycles, bicycles
and pedestrians, while group (2) includes tall objects like trucks,
buses and trailers. We also show the performance gain of different
components compared with LiDAR-only method.

Method R2L
L2R Mean AP ↑ (%) Gain (%)

QHF QBF Group 1 Group 2 Group 1 Group 2

(a) 64.5 52.6 - -
(b) � 66.4 52.6 +1.9 +0.0
(c) � � 66.8 53.9 +2.3 +1.3
(d) � � 68.6 53.0 +4.1 +0.4

Table 2. mAP and mAVE results for LiDAR-only CenterPoint [7]
and Bi-LRFusion for cars at different ranges.

Method
Range AP(%) on Car
(m) 0.5m 1.0m 2.0m

LiDAR-only
0-20 93.3 96.5 96.5
20-40 69.8 82.2 85.5
>40 26.1 40.1 45.8

Bi-LRFusion
0-20 92.6 95.5 999666...666 (+0.1)
20-40 777111...000 (+1.2) 888333...555 (+1.3) 888666...777 (+1.2)
>40 222777...999 (+1.8) 444222...666 (+2.5) 444888...000 (+2.2)

become sparse as the distance increases, while the Radar
points are uniform compared to the LiDAR points. In con-
clusion, Radar data are of great help to locating and detect-
ing targets especially at long distances.

G. Effect of Sensor Misalignment levels

We first define misalignment levels followed BEV-
Former [6]. For the i-th level, a translation noise sampled
from a normal distribution σ ∼ (0,2.5i) is introduced to
each direction. Besides, a horizontal rotation noise sam-
pled from a normal distribution σ ∼ (0, i) is also introduced.
From Table 3, Bi-LRFusion is able to tolerate misalignment
levels 1-3, thanks to the query-based mechanism that can
effectively query features within a certain area (instead of a
single point or a small number of points). However, when
the misalignment level increases beyond the query range,
the performance starts to drop significantly (level 4). We
will elaborate on the misalignment tolerance issue in the re-
vision.

Table 3. The mAP (%) under different misalignment levels.

Level 0 1 2 3 4

mAP (%) 62.0 61.8 61.5 61.4 60.8



H. Comparison with existing methods
Bi-LRFusion can be applied to different LiDAR-only de-

tectors, not limited to CenterPoint. Therefore, we choose
TransFusion-L [1], which is also a prevalent baseline in the
community, to conduct further experiments. As shown in
Table 4, our Bi-LRFusion improves TransFusion-L consid-
erably, demonstrating its generalizability.

Table 4. Experimental Results with Transfusion-L.

Methods Modality mAVE ↓ mAP ↑
Transfusion-L L 24.8 65.3

+ Bi-LRFusion L+R 23.7 67.5
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