
Supplementary Material
Co-SLAM: Joint Coordinate and Sparse Parametric Encodings for

Neural Real-Time SLAM

Hengyi Wang⋆ Jingwen Wang⋆ Lourdes Agapito
Department of Computer Science, University College London
{hengyi.wang.21, jingwen.wang.17, l.agapito}@ucl.ac.uk

1. Implementation details

1.1. Hyperparameters

Here we report the detailed settings and hyper-
parameters used in Co-SLAM to achieve high-quality re-
construction and quasi-realtime performance.

Default setting. For camera tracking, we select Nt = 1024
pixels and perform 10 iterations of tracking with Mc = 32
regular sampling and Mf = 11 depth-guided sampling for
each camera ray. In terms of mapping and bundle adjust-
ments, we select Ng = 2048 pixels and use 200 iterations
for first frame mapping, 10 iterations for bundle adjustment
every 5 frames. For scene representations, we use L = 16
level HashGrid with from Rmin = 16 to Rmax, where we
use max voxel size 2cm for determining Rmax, and 16 bins
for OneBlob encoding of each dimension. Two 2-layer shal-
low MLPs with 32 hidden units are used to decode color
and SDF. The dimension of the geometric feature h is 15.
For the training of our scene representation, we use learning
rate of 1e−3 for tracking and 1e−2, 1e−2, 1e−3 for feature
grid, decoder, and camera parameters during bundle adjust-
ment. The weights of each loss are λrgb = 5, λd = 0.1,
λsdf = 1000, λfs = 10, and λsmooth = 1e−6. The trunca-
tion distance tr is set to 10cm.

ScanNet dataset. For ScanNet dataset, we change the voxel
size to 4cm for the finest resolution, and increase the num-
ber of sample points to Mc = 96, Mf = 21. The λsmooth

is increased to 1e− 3.

TUM dataset. Since scenes in TUM dataset is mostly fo-
cusing on reconstructions of tables instead of the whole
room, we use 20 iterations for bundle adjustment, and set tr
to 5cm. The weights of each loss are λrgb = 1.0, λd = 0.1,
λsdf = 5000, λfs = 10, and λsmooth = 1e−8. The
learning rate of camera parameters in tracking process is
increased to 1e− 2.

⋆ Indicates equal contribution.
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Figure 1. Visualization of different culling strategy applied on
mesh reconstructed by NICE-SLAM [7]. Culling by frustum fails
to remove the artefacts outside the scene bound (view-1), while
culling by frustum+occlusion removes occluded regions (view-2
and view-3) inside the room. Our proposed method could re-
move unwanted artefacts outside the room but preserve the com-
pleteness inside the room.

1.2. Evaluation Protocol

We have introduced a modification to the culling strategy
used for the quantitative evaluation of the reconstruction ac-
curacy, which we believe leads to a fairer comparison. In
this section we describe this new culling strategy in detail
and provide a justification for its use.

In the context of neural implicit reconstruction and
SLAM [1, 5–7], due to the extrapolation ability of neural
networks an extra mesh culling step is required before eval-
uating the reconstructed mesh. We show a demonstration
in Fig. 1. In previous works two different culling strate-
gies are used: NICE-SLAM [7] and iMAP [5] adopted a
culling-by-frustum strategy where mesh vertices outside any
of the camera frustums are removed. This simple strategy
works effectively well but cannot remove artifacts that are
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iMAP⋆ [5] NICE-SLAM [7] Ours

Depth L1 ↓ 7.64 3.53 1.58
Acc. ↓ 6.95 2.85 2.15
Comp. ↓ 5.33 3.00 2.21
Comp. Ratio ↑ 66.60 89.33 92.99

Table 1. Reconstruction results on Replica dataset using NICE-
SLAM culling strategy. The smooth weight λsmooth is increased
to 1e− 3, and hash table size is set to be 14.

3D Metric definition
Acc

∑
p∈P (minq∈Q∥p− q∥)/|P |

Comp
∑

q∈Q(minp∈P ∥p− q∥)/|Q|
C-ℓ1 (Acc + Comp)/2
Comp Ratio

∑
q∈Q(minp∈P ∥p− q∥ < 0.05)/|Q|

Table 2. Definitions of 3D metrics used for evaluation of recon-
struction quality.

inside camera frustums but outside of scene bound, such as
in view-1. In NeuralRGBD [1] and GO-Surf [6] the frus-
tum+occlusion strategy is used, where in addition to the
frustum criteria self-occlusion is also considered by com-
paring the rendered depth. While this strategy could ef-
fectively remove the artifacts in view-1 it also removes
the occluded regions as in view-2 and view-3. There-
fore, we propose a new culling strategy that follows the
frustum+occlusion criteria but also simulates virtual cam-
era views that cover the occluded regions. Since we focus
on the inner surface of the scene in Replica dataset [4], we
can remove the noisy points outside the mesh of interest to
make fair comparison of different methods.

We also show evaluation of reconstruction quality using
nice-slam culling strategy in Tab. 1. To remove the noisy
points outside the outer surface caused by hash collision,
we increase the smooth weight to λsmooth = 1e − 3 and
increase the default hash lookup table size from 13 to 14.

1.3. Evaluation Metrics

After mesh culling we evaluate the reconstructed
mesh with a mixture of 3D (Accuracy, Completion and
Completion Ratio) and 2D (Depth L1) metrics. We first
uniformly sample two point clouds P and Q from both GT
and reconstructed meshes, with |P | = |Q| = 200000. Then
accuracy is defined as the average distance between a point
on GT mesh to its nearest point on reconstructed mesh,
other metrics are defined in the same fashion, see Tab. 2.

For depth L1, following [7] we render depth from N =
1000 virtual views of GT and reconstructed mesh. The vir-
tual views are sampled uniformly inside a cube within the
room. Views that have unobserved points will be rejected
and re-sampled. Then depth L1 is defined as the average L1
difference between rendered GT depth and reconstruction
depth.

NICE-SLAM Ours

Figure 2. A more comprehensive comparison of raw trajectory
w/o alignment. In both figures ground truth trajectory are shown
in black and the estimated trajectory are shown in red.

Scene ID 0000 0059 0106 0169 0181 0207 Avg.

NICE-SLAM 8.64 12.25 8.09 10.28 12.93 5.59 9.63
Ours 7.13 11.14 9.36 5.90 11.81 7.14 8.75
NICE-SLAM 25.24 25.01 10.40 30.51 39.98 12.70 23.97
Ours 12.94 19.12 12.12 19.61 34.41 9.88 18.01

Table 3. ATE RMSE (cm) results (w/ and w/o trajectory align-
ment) of average of 5 runs on ScanNet.

2. Additional Experimental Results
2.1. More Results on Synthetic Datasets

Here we show more detailed results on all the synthetic
scenes in Replica [4] and Synthetic RGB-D [1]. We show
per-scene quantitative results of the Replica [4] and Syn-
thetic RGB-D dataset [1] in Tab. 4 and Tab. 5. Our method
shows consistently better results in terms of the Comple-
tion and competitive results of Accuracy. We also provide
more qualitative comparisons on Replica dataset in Fig. 4-7
in different scenes with different shading mode.

2.2. More Results on Real-world Scenes

ScanNet sequences [2]. In our main paper we showed top-
down view comaparison on ScanNet sequence, which high-
lighted more on overall reconstruction quality and tracking
accuracy. In this section we show more detailed zoom-in
views in Fig. 8-10 to better showcase the level of details
and fidality that Co-SLAM can achieve on those challeng-
ing real-world sequences.
NICE-SLAM apartment [7]. In addition to the 6 se-
quences from ScanNet, we also compared Co-SLAM and
NICE-SLAM on the apartment sequence collected by the
authors of NICE-SLAM using Azure Kinect depth cam-
era. We run Co-SLAM with our ScanNet setting. We show
qualitative comparison from different views in Fig. 11. As
can be seen Co-SLAM achieves smoother and better qual-
ity reconstruction in much shorter time (40 minutes vs. 10
hours).
Self-captured room. In addition to ScanNet sequences and
the apartment sequences captured by the authors of NICE-
SLAM, we also collected our two real-world indoor se-



room0 room1 room2 office0 office1 office2 office3 office4 Avg.

iMAP

Depth L1 [cm] ↓ 5.08 3.44 5.78 3.79 3.76 3.97 5.61 5.71 4.64
Acc. [cm] ↓ 4.01 3.04 3.84 3.34 2.10 4.06 4.20 4.34 3.62
Comp. [cm] ↓ 5.84 4.40 5.07 3.62 3.62 4.73 5.49 6.65 4.93
Comp. Ratio [< 5cm %] ↑ 78.34 85.85 79.40 83.59 88.45 79.73 73.90 74.77 80.50

NICE-SLAM

Depth L1 [cm] ↓ 1.79 1.33 2.20 1.43 1.58 2.70 2.10 2.06 1.90
Acc. [cm] ↓ 2.44 2.10 2.17 1.85 1.56 3.28 3.01 2.54 2.37
Comp. [cm] ↓ 2.60 2.19 2.73 1.84 1.82 3.11 3.16 3.61 2.63
Comp. Ratio [< 5cm %] ↑ 91.81 93.56 91.48 94.93 94.11 88.27 87.68 87.23 91.13

Co-SLAM

Depth L1 [cm] ↓ 1.05 0.85 2.37 1.24 1.48 1.86 1.66 1.54 1.51
Acc. [cm] ↓ 2.11 1.68 1.99 1.57 1.31 2.84 3.06 2.23 2.10
Comp. [cm] ↓ 2.02 1.81 1.96 1.56 1.59 2.43 2.72 2.52 2.08
Comp. Ratio [< 5cm %] ↑ 95.26 95.19 93.58 96.09 94.65 91.63 90.72 90.44 93.44

Table 4. Per-scene quantitative results on Replica [4] dataset. Our method achieves consistently better reconstruction in comparison to
NICE-SLAM [7] and iMAP [5] in most of the scenes.

BR CK GR GWR MA TG WR Avg.

iMAP*

Depth L1 [cm] ↓ 24.03 63.59 26.22 21.32 61.29 29.16 81.71 47.22
Acc. [cm] ↓ 10.56 25.16 13.01 11.90 29.62 12.98 24.82 18.29
Comp. [cm] ↓ 11.27 31.09 19.17 20.39 49.22 21.07 32.63 26.41
Comp. Ratio [< 5cm %] ↑ 46.91 12.96 21.78 20.48 10.72 19.17 13.07 20.73

NICE-SLAM

Depth L1 [cm] ↓ 3.66 12.08 10.88 2.57 1.72 7.74 5.59 6.32
Acc. [cm] ↓ 3.44 10.92 5.34 2.63 6.55 3.57 9.22 5.95
Comp. [cm] ↓ 3.69 12.00 4.94 3.15 3.13 5.28 4.89 5.30
Comp. Ratio [< 5cm %] ↑ 87.69 55.41 82.78 87.72 85.04 72.05 71.56 77.46

Co-SLAM

Depth L1 [cm] ↓ 3.51 5.62 1.95 1.25 1.41 4.66 2.74 3.02
Acc. [cm] ↓ 1.97 4.68 2.10 1.89 1.60 3.38 5.03 2.95
Comp. [cm] ↓ 1.93 4.94 2.96 2.16 2.67 2.74 3.34 2.96
Comp. Ratio [< 5cm %] ↑ 94.75 68.91 90.80 95.04 86.98 86.74 84.94 86.88

Table 5. Per-scene quantitative results on Synthetic RGBD [1] dataset. Since this dataset simulates noisy depth maps with missing depth
measurement, our method surpasses NICE-SLAM [7] by a larger margin. This indicates our method is more robust to input noise.

quences using RealSense D435i depth camera, whose depth
quality is slightly worse than Azure Kinect. We show qual-
itative comparison in Fig. 12 and Fig. 13.

2.3. ScanNet Camera Tracking Results

In this section, we provide a more comprehensive view
of the camera tracking results on the ScanNet dataset. In
evaluating the absolute trajectory error (ATE), a rigid trans-
formation is estimated to align the estimated trajectory with
the ground truth. While this protocol is widely used in tra-
ditional SLAM and also in NICE-SLAM [7], we observe
that this does not always tell the whole story. For exam-
ple, Fig. 2 shows the reconstructed ScanNet scene with es-
timated camera trajectory under the same world coordinate,
i.e. without doing the trajectory alignment. It can be seen
that Co-SLAM performs better in terms of camera track-
ing (Note the top-left and top-right corner of the trajectory)
and leads to less distorted reconstruction. However, this is
not reflected in Tab. 4 in our main paper as trajectory align-
ment. Therefore in Tab. 3 we report the full camera tracking
results both with and without trajectory alignment. As can
be seen, Co-SLAM achieves overall better and more robust
tracking results.

2.4. More Ablation Studies

Using separate color grid. As dedcribed om our main pa-
per, we adopted two separate MLP decoders for color and
geometry but only use a single hash-grid. In Tab 6 we shows
the comparison of using two separate hash grids for color
and geometry, and using one hash grid (our default setting).
We empirically discover that thanks to our joint coordinate
and sparse parametric encoding, using a single hash-grid al-
ready achieves similar tracking accuracy and reconstruction
quality while is more computational efficient and requires
much less memory storage.
Effect of smoothness term. We also conduct ablation study
on the effectiveness of our smoothness term applied on the
features. As shown in Fig. 3, our smooth loss could pro-
vide a effective regularisation and remove artefacts caused
by hash collisions in unobserved regions that do not have
any supervision.
Effect of pose optimization in global BA. We perform an
additional experiment on performing our GBA without any
pose optimization (GBA‡) in Tab. 8. We show that even
the sample points in each sampled batch (2048 rays) may
not have large overlapping, optimizing camera pose with



w/ smooth term w/o smooth term

Figure 3. Reconstruction result w/ and w/o our smoothness term.
Smoothness term could effectively remove hash collision artefacts.

Method Tracking (ms) Mapping (ms) Memory ATE↓
Two grids 9.9×20 25.4×10 1.7M 8.69
One grid 7.8×20 20.2×10 0.8M 8.75

Table 6. Performance analysis of modeling the geometry and ap-
pearance using one/two grids. The ATE is similar while using
one grid require less computational cost. Run-time is reported in
ms/iter × #iter format.

Method Acc. ↓ Comp. ↓ C-ℓ1 ↓ NC ↑ F-score ↑ Run time

Neural RGBD 0.0151 0.0197 0.0174 0.9316 0.9635 10-25h
GO-Surf 0.0158 0.0195 0.0177 0.9317 0.9591 15-45min
Ours 0.0149 0.0179 0.0164 0.9292 0.9629 100-500s

Table 7. Quantitative results of the reconstruction on 10 synthetic
scenes [1]. The evaluation metrics and protocol follow Neural
RGBD [1] and GO-Surf [6]. We achieve on-par performance but
our training is significantly faster.

Name KF selection #KF Pose
optim. ATE (cm) Std. (cm)

Local Global 0 10 All

w/o BA ✓ 16.81 1.69
LBA ✓ ✓ ✓ 9.69 1.38
GBA-10 ✓ ✓ ✓ 9.54 0.67
GBA‡ ✓ ✓ 9.72 0.53
GBA ✓ ✓ ✓ 8.75 0.33

Table 8. Ablation using different BA strategies on Co-SLAM:
(LBA) BA with rays from 10 local keyframes; (GBA-10) BA with
rays from 10 randomly selected keyframes; (GBA‡): BA with rays
from all keyframes w/o pose optimization; (GBA) BA with rays
from all keyframes and pose optimization (our full method). All
methods sample a total of 2048 rays per iteration.

such sampling strategy can still significantly improve the
performance and the robustness of the pose estimation.

2.5. Batch-mode Optimisation

To validate the representation ability of the proposed
joint coordinate and parametric encoding, we also perform
experiments of batch mode optimisation, which is an of-
fline approach and the pose initialised by BundleFusion [3]
is given. Tab. 7 shows the quantitative results of differ-
ent methods. Neural RGBD [1] is a coordinate encoding-

based method while GO-Surf [6] is a parametric encoding-
based method. By using the proposed joint coordinate and
parametric encoding, we achieve competitive reconstruc-
tion performance with significantly faster training speed.
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iMAP† [5] NICE-SLAM [7] Ours† Ground Truth

Figure 4. Qualitative comparison on Replica office-0 with different shading mode. Our methods achieve accurate scene reconstruction
with high frequence details. At the same time, our reconstruction is also sharper and smoother.

iMAP† [5] NICE-SLAM [7] Ours† Ground Truth

Figure 5. Qualitative comparison on Replica office-2 with different shading mode. Note that regions with different color styles in the
groundtruth color image indicate the unobserved region. Our method achieve better scene completion for unobserved regions.



iMAP† [5] NICE-SLAM [7] Ours† Ground Truth

Figure 6. Qualitative comparison on Replica office-3 with different shading mode. Our method achieves smooth reconstruction for
regions that contain multiple objects while other methods contain some build-up effect.

iMAP† [5] NICE-SLAM [7] Ours† Ground Truth

Figure 7. Qualitative comparison on Replica office-4 with different shading mode. Note that regions with different color styles in
the groundtruth color image indicate the unobserved region. Our method can accurately recover the thin structures while achieve smooth
reconstruction around the flat regions that have not been observed.



iMAP∗ [5] NICE-SLAM [7] Ours ScanNet Mesh

Figure 8. Qualitative comparison on ScanNet scene0000 with different shading mode. For real world scans, our method can accurately
recover thin structures (e.g. bicycle) while achieve better hole fillings. Since we adopt global bundle adjustment, our scene reconstruction
seems to have better coherence while reconstruction of NICE-SLAM [7] contains some stitched effect due to the local bundle adjustment.

iMAP∗ [5] NICE-SLAM [7] Ours ScanNet Mesh

Figure 9. Qualitative comparison on ScanNet scene0059 with different shading mode. Our method achieve smooth reconstruction of
the floor while accurately recover the chairs.



iMAP∗ [5] NICE-SLAM [7] Ours ScanNet Mesh

Figure 10. Qualitative comparison on ScanNet scene0106 with different shading mode. Our reconstruction result is clearly less noisy in
comparison to other two baseline models.
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Figure 11. Qualitative comparison on NICE-SLAM apartment sequence on different view-point with different shading mode. Co-SLAM
achieves smooth, detailed and high-fidelity reconstruction while running > 10 times faster.
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Figure 12. Qualitative comparison on self-captured room sequence on different view-point with different shading mode. Overall Co-SLAM
produces higher quality surface reconstruction with finer details (the desk chair, the objects on the desk and sofa, the curtain, etc). Also
note that NICE-SLAM lost tracking slightly causing the reconstructed scene to be torn apart.
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Figure 13. Qualitative comparison on a different scan of the same room in Fig. 12. Note how Co-SLAM produces better surface recon-
struction while running > 10 time faster.


