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A. Proofs of Our Statements
Property 1 We denote B = {−1,+1}K×K as the dictionary of binary kernels. For each w ∈ RK×K , the binary kernel ŵ
can be derived by a grouping process:

ŵ = sign(w) = argmin
u∈B

∥u−w∥2.

Proof. We denote w(k1, k2) the entry of w in the k1-th row and k2-th column, and similar denotation follows for u. We
have,

argmin
u∈B

∥u−w∥22 = argmin
u∈B

∑
k1,k2

|u(k1, k2)− w(k1, k2)|2

= { argmin
u(k1,k2)∈{−1,+1}

|u(k1, k2)− w(k1, k2)|2}k1,k2

= {sign(w(k1, k2))}k1,k2

= sign(w),

which concludes the proof. □
Before the proofs for the lemma and theorem, in Figure 6, we provide the relationship of notations that are adopted in the

main paper to facilitate the understanding of our permutation learning process.

forward

backward
(PSTE)

A doubly stochastic matrix: nonnegative, each of the 
rows sums to 1, and each of the columns sums to 1.

Outputted permutation matrix. A 0/1 matrix, each 
of the rows and columns has only a single 1.

Approximated permutation matrix. For 
gradient propagation, not a 0/1 matrix.

Ideal permutation matrix. A 0/1 matrix, each 
of the rows and columns has only a single 1.

or

Learnable matrix, 
randomly initialized.

Only these parameters are actually calculated.

Figure 6. Relationship of notations for a better understanding. The horizontal axis and vertical axis stand for the values of k and τ ,
respectively. The Gumbel noise ϵ is omitted here. Only parameters in the green region are actually calculated during training, while
the others are only for the understanding purpose. All these parameters are NOT needed during inference. Starting from a learnable
matrix X , we adopt a temperature τ and calculate S0(X/τ). We then perform the Sinkhorn operation for k iterations to further obtain
PGS = Sk(X/τ). We apply the Hungarian algorithm to further obtain Preal. For sufficiently large k and small τ , Preal equals the ideal
permutation matrix.
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Lemma 1 For sufficiently large k and small τ , we define the entropy of a doubly-stochastic matrix P as h(P ) = −
∑

i,j Pi,j logPi,j ,
and denote the rate of convergence for the Sinkhorn operator as r (0 < r < 1)1. There exists a convergence series sτ (sτ → 0
when τ → 0+) that satisfies

∥Preal − PGS∥22 = O
(
s2τ + r2k

)
. (1)

Proof. Let Xτ = X/τ and X0 = limτ→0+ Xτ . In addition, follow the definitions in Equation 5 (main paper), we denote
Sk(·) the k-th iteration of the Sinkhorn output and S(·) = limk→∞ Sk(·).

As proved by [7], the Sinkhorn operator has a rate of convergence r (0 < r < 1) with respect to k, where r always exists
and is bounded by a value lower than 1. There is

∥Sk(Xτ )− S(Xτ )∥2 ≤ r∥Sk−1(Xτ )− S(Xτ )∥2 ≤, · · · ,≤ rk−1∥S1(Xτ )− S(Xτ )∥2.

By the definition of Sk(Xτ ) in Equation 5 (main paper), the values of Sk(Xτ ) are located in [0, 1] for all k ≥ 1. In
addition, S(Xτ ) is a 0/1 matrix with exactly N ones, where N is the dimension. Therefore, ∥S1(Xτ ) − S(Xτ )∥22 is well
bounded and thus we obtain

∥Sk(Xτ )− S(Xτ )∥2 ≤ C1r
k,

where C1 > 0 is a constant.
As mentioned in Equation 4 (main paper), S(Xτ ) must be a doubly-stochastic matrix [17]. According to Lemma 3

in [13], if denoting f0(·) = ⟨·,X⟩F , there is |f0(S(X0)) − f0(S(Xτ ))| ≤ τ(h(S(Xτ )) − h(S(X0))) = τh(S(Xτ )) ≤
τ maxP∈BN

(h(P )), where BN denotes the the set of doubly stochastic matrices of dimension N .
As proved by Lemma 3 in [13], |f0(S(X0))− f0(S(Xτ ))| ≤ τ maxP∈BN

(h(P )) implies the convergence of S(Xτ ) to
S(X0) and there exists a convergence series sτ (sτ → 0 when τ → 0+), satisfying ∥S(X0) − S(Xτ )∥2 ≤ C2sτ , where
C2 > 0 is a constant.

Based on the triangle inequality, there is

∥S(X0)− Sk(Xτ )∥22 ≤ (C2sτ + C1r
k)2 ≤ 2C2

2s
2
τ + 2C2

1r
2k.

As mentioned in § 3.3 (main paper), there is PGS = Sk(Xτ ) if we omit the noise term. Given the convergence property,
for sufficiently large k and small τ , the Hungarian algorithm output Preal equals to the real permutation, i.e. Preal = S(X0).
In summary, we have

∥Preal − PGS∥22 = O
(
s2τ + r2k

)
,

which concludes the proof. □
With the help of Lemma 1 and the inspiration of error-feedback framework [5], we now provide the detailed proof for

Theorem 1.

Theorem 1 Assume that the training objective f w.r.t. PGS is L-smooth, and the stochastic gradient of Preal is bounded by
E∥g(Preal)∥22 ≤ σ2. Denote the rate of convergence for the Sinkhorn operator as r (0 < r < 1) and the stationary point

as P ⋆
GS. Let the learning rate of PSTE be η = c√

T
with c =

√
f(P 0

GS)−f(P ⋆
GS)

Lσ2 . For a uniformly chosen u from the iterates
{P 0

real, · · · ,P T
real}, concretely u = P t

real with the probability pt = 1
T+1 , it holds in expectation over the stochasticity and

the selection of u :

E∥∇f(u)∥22 = O

(
σ

√
f(P 0

GS)− f(P ⋆
GS)

T/L
+ L2(s2τ + r2k

))
. (2)

Proof. Since the objective function f is L-smooth, g(PGS) = g(Preal) in our PSTE, and P t+1
GS = P t

GS − ηg(P t
real), we

can obtain the following derivations,

f(P t+1
GS ) ≤ f(P t

GS) +
〈
P t+1

GS − P t
GS,∇f(P t

GS)
〉
+

L

2
∥P t+1

GS − P t
GS∥22

= f(P t
GS)− η

〈
g(P t

real),∇f(P t
GS)
〉
+

Lη2

2
∥g(P t

real)∥22 .

1The Sinkhorn operator has a rate of convergence r bounded by a value lower than 1 as proved by [7].



We use E to represent the expectation with respect to the stochasticity. Based on the bound of the stochastic gradient, i.e.
E∥g(P t

real)∥22 ≤ σ2, and a natural property ⟨x,y⟩ ≤ 1
2∥x∥

2
2 +

1
2∥y∥

2
2, it holds that,

E
[
f(P t+1

GS |P t
GS)
]
≤ f(P t

GS)− η
〈
E
[
g(P t

real)
]
,∇f(P t

GS)
〉
+

Lη2

2
E∥g(P t

real)∥22

≤ f(P t
GS)− η

〈
∇f(P t

real),∇f(P t
GS)
〉
+

Lη2σ2

2

= f(P t
GS)− η

〈
∇f(P t

real),∇f(P t
real)

〉
+

Lη2σ2

2
+ η
〈
∇f(P t

real),∇f(P t
real)−∇f(P t

GS)
〉

≤ f(P t
GS)− η∥∇f(P t

real)∥22 +
Lη2σ2

2
+

η

2
∥∇f(P t

real)∥22 +
η

2
∥∇f(P t

real)−∇f(P t
GS)∥22

≤ f(P t
GS)−

η

2
∥∇f(P t

real)∥22 +
Lη2σ2

2
+

ηL2

2
∥P t

real − P t
GS∥22 .

With Lemma 1,

E
[
f(P t+1

GS |P t
GS)
]
≤ f(P t

GS)−
η

2
∥∇f(P t

real)∥22 +
Lη2σ2

2
+

ηL2

2

(
C1s

2
τ + C2r

2k
)
,

where C1 > 0 and C2 > 0 are constants.
By rearranging the orders and further applying the expectation on P t

GS,

E∥∇f(P t
real)∥22 ≤ 2

η

(
E
[
f(P t

GS)
]
− E

[
f(P t+1

GS )
])

+ Lησ2 + L2
(
C1s

2
τ + C2r

2k
)
.

Summing over t = 0, 1, · · · , T ,

T∑
t=0

E∥∇f(P t
real)∥22 ≤ 2

η

T∑
t=0

(
E
[
f(P t

GS)
]
− E

[
f(P t+1

GS )
])

+ Lησ2 + L2
T∑

t=0

(
C1s

2
τ + C2r

2k
)

≤ 2

η

(
f(P 0

GS)− f(P ⋆
GS)
)
+ (T + 1)Lησ2 + L2

T∑
t=0

(
C1s

2
τ + C2r

2k
)
.

For a uniformly chosen u from the iterates {P 0
real, · · · ,P T

real}, concretely u = P t
real with the probability pt = 1

T+1 .
Divide the inequation by T + 1, and extend E to represent the expectation over the stochasticity and the selection of u, there
is

E∥∇f(u)∥22 ≤ 2

η(T + 1)

(
f(P 0

GS)− f(P ⋆
GS)
)
+ Lησ2 + L2

(
C1s

2
τ + C2r

2k
)
.

Substituting the learning rate η, we finally obtain

E∥∇f(u)∥22 ≤ 2σ
√
LT

T + 1

√
f(P 0

GS)− f(P ⋆
GS) +

σ
√
L√
T

√
f(P 0

GS)− f(P ⋆
GS) + L2

(
C1s

2
τ + C2r

2k
)
.

≤ 3σ

√
f(P 0

GS)− f(P ⋆
GS)

T/L
+ L2

(
C1s

2
τ + C2r

2k
)
,

Therefore,

E∥∇f(u)∥22 = O

(
σ

√
f(P 0

GS)− f(P ⋆
GS)

T/L
+ L2

(
s2τ + r2k

))
,

which concludes the proof. □



B. Experiment Details and Analysis
B.1. Implementation Details

Implementation of ImageNet training. We follow the two-step scheme (as detailed in § 4 of the main paper) and the
training settings in [12]. Specifically, for each step, the model is trained for 640k training iterations with batch size 512.
We adopt the Adam optimizer [6] and set the initial learning rate to 10−3. Weight decay rates in the first and second steps
are 10−5 and 0, respectively. For experiments on ImageNet, models are trained with 8 V100 GPUs. We follow the training
settings and data augmentation strategies in [12].

Implementation of CIFAR10 training. For experiments on CIFAR10, each experiment is performed on a single V100
GPU. We train the network with 256 epochs in each step. We set the batch size to 256 and use an Adam optimizer [6]. The
learning rate is initialized to 5 × 10−4 and is updated by a linear learning rate decay scheduler. Results of our method on
CIFAR10 are averaged over three runs.

Implementation of our selection and ablation studies. We further clarify our implementation of the codeword selec-
tion process based on Figure 4 (Middle) (main paper), where we provide four experiment settings including using kernel-
wise/channel-wise codewords, and selection-based/product-quantization-based learning. Implementation details for these
four experiments (labeled as (a)-(d), respectively) are described as follows.

(a) Selection, kernel-wise (our proposed method): each codeword is a 3 × 3 convolutional kernel with values being ±1.
We constantly keep the 1st (all −1s) and 512th (all +1s) codewords in the sub-codebook, as these two codewords take
a large proportion. We divide the remaining 510 codewords into two halves (1st half: from index 2 to 256; 2nd half:
from index 257 to 511). Obviously, each codeword in one half has a corresponding codeword with opposite signs in
another half. This technique speeds up the selection process without noticeably affecting the performance.

(b) Selection, channel-wise: each codeword is a 1× 9 sub-vector with values being ±1, and codewords are obtained from
flattened convolutional weights. We follow the speed up strategy in (a) by dividing codewords into two parts. Unlike
(a), we do not constantly send the 1st (all −1s) and 512th (all +1s) codewords to the sub-codebook, since this process
does not bring improvements for the channel-wise setting.

(c) Product quantization, kernel-wise: we follow the common method of product quantization [8, 18] to learn real-valued
codewords. Before training, we randomly initialize 2n different 3 × 3 real-valued codewords, with their values being
±1.0. During training, in the forward pass, we obtain the binary codewords by applying the sign function on the
real-valued codewords. In the backward pass, the Straight-Through Estimator technique is adopted which copies the
gradients of binary codebooks to real-valued codebooks.

(d) Product quantization, channel-wise: the learning process follows (c), yet each codeword is a 1 × 9 sub-vector across
multiple channels, obtained from flattened convolutional weights.

Storage and BOPs calculation. In Table 4, we provide details of how storages and BOPs in Table 2 (main paper) are
calculated. The calculation follows the analysis described in § 3.4 (main paper).

B.2. Additional Experiment Analysis

Power-law property. Figure 7 illustrates the distributions when ranking codewords in Figure 1 (main paper) according to
the codeword frequency. It shows that in Figure 7(b), codewords nearly obey the power-law distribution.
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Codeword index (ranked w.r.t. frequency) Codeword index (ranked w.r.t. frequency)

(a) Codebook constructed with sub-vectors (multi-channel codewords) (b) Codebook constructed with kernels (single-channel codewords)

Figure 7. A supplement to Figure 1 (main paper) by ranking codewords w.r.t. the frequency. It shows that the ranked codewords in (b)
nearly follow the power-law distribution.



Table 4. Calculation details for the storage and BOPs as reported in Table 2 (main paper). Networks are evaluated on the ImageNet dataset
with ResNet-18.

layer-name input-w input-h input-c output-w output-h output-c kernel-w kernel-h
Storage (bit) BOPs

1-bit (Base) 0.78-bit 0.67-bit 0.56-bit 1-bit (Base) 0.78-bit 0.67-bit 0.56-bit

A B C D E F G H I J K L M N O P Q

conv1 224 224 3 112 112 64 7 7 - - - - - - - -
conv2-1a 56 56 64 56 56 64 3 3 36864 28672 24576 20480 115605504 115605504 115605504 64225248
conv2-1b 56 56 64 56 56 64 3 3 36864 28672 24576 20480 115605504 115605504 115605504 64225248
conv2-2a 56 56 64 56 56 64 3 3 36864 28672 24576 20480 115605504 115605504 115605504 64225248
conv2-2b 56 56 64 56 56 64 3 3 36864 28672 24576 20480 115605504 115605504 115605504 64225248
conv3-1a 56 56 64 28 28 128 3 3 73728 57344 49152 40960 57802752 57802752 32112576 17661888
conv3-1b 28 28 128 28 28 128 3 3 147456 114688 98304 81920 115605504 115605504 64225216 35323840
conv3-2a 28 28 128 28 28 128 3 3 147456 114688 98304 81920 115605504 115605504 64225216 35323840
conv3-2b 28 28 128 28 28 128 3 3 147456 114688 98304 81920 115605504 115605504 64225216 35323840
conv4-1a 28 28 128 14 14 256 3 3 294912 229376 196608 163840 57802752 32112512 17661824 10436480
conv4-1b 14 14 256 14 14 256 3 3 589824 458752 393216 327680 115605504 64225152 35323776 20873088
conv4-2a 14 14 256 14 14 256 3 3 589824 458752 393216 327680 115605504 64225152 35323776 20873088
conv4-2b 14 14 256 14 14 256 3 3 589824 458752 393216 327680 115605504 64225152 35323776 20873088
conv5-1a 14 14 256 7 7 512 3 3 1179648 917504 786432 655360 57802752 17661696 10436352 6823680
conv5-1b 7 7 512 7 7 512 3 3 2359296 1835008 1572864 1310720 115605504 35323648 20872960 13647616
conv5-2a 7 7 512 7 7 512 3 3 2359296 1835008 1572864 1310720 115605504 35323648 20872960 13647616
conv5-2b 7 7 512 7 7 512 3 3 2359296 1835008 1572864 1310720 115605504 35323648 20872960 13647616
fc1000 1 1 512 1 1 1000 - - - - - - - - - -

Total 10985472
=11.0Mbit

8544256
=8.57Mbit

7323648
=7.32Mbit

6103040
=6.10Mbit

1676279808
=1.68×109

1215461888
=1.22×109

883898624
=0.88×109

501356672
=0.50×109

Storage: J=G×D×H×I; K=J× log2(128)/9; L=J× log2(64)/9; M=J× log2(32)/9.
BOPs: N=D×E×F×H×I×G; O= min{N, N/G×128+G×(D×E×F−1)/2}; P= min{N, N/G×64+G×(D×E×F−1)/2}; Q= min{N, N/G×32+

G×(D×E×F−1)/2}.

Codewords selection and overlaps. In Figure 8, we further compare the codewords learning processes for the four
settings in Figure 4 (Middle) (main paper). As a supplement to Figure 4 (Right) (main paper), Figure 9 provides the change
of sub-codebooks during training of the four experiment settings (a)-(d). As codewords in (c) and (d) tend to overlap during
training, the diversity is severely affected. In addition, we also conduct experiments that at each step or every several
steps, we replenish the sub-codebook with random different codewords so that the sub-codebook size recovers to 2n, but
the performance is very close to directly selecting codewords at random (as already shown in Figure 4 (Left) (main paper),
randomly selection achieves low performance).

Acceleration of training. We consider two approaches that can accelerate the training process on large datasets (e.g.
ImageNet), without causing much detriment to the performance. (1) We conduct permutation learning only in the first 30×103

training steps, and fix the selected codewords for the later training. (2) We obtain the sub-codebook by pretraining on a small
dataset like CIFAR10, and directly adopt the sub-codebook for ImageNet without further permutation learning. Compared
with the results of our Sparks reported in Table 2 (main paper), the performance does not decrease when using the acceleration
approach (1), and decreases slightly (−0.4%, −0.6%, and −1.1% for 0.78-bit, 0.67-bit, and 0.56-bit, respectively) when using
the approach (2).

Sensitivity analysis of hyper-parameters. In Figure 10, we compare the accuracy with different hyper-parameter settings
for k and τ in Equation 6 (main paper). In the PSTE optimization, k is the iteration number and τ is the temperature. Exper-
iments are performed with ResNet-18 and VGG-small on CIFAR10. We observe that both hyper-parameters are insensitive
around their default settings k = 10 and τ = 10−2. The parameter k is quite easy to choose since results are stable when
k = 5 ∼ 20. In addition, regarding two extreme cases, setting τ too small (e.g. 10−4) will hinder the smoothness of gradient
back-propagation, and assigning a too large value (e.g. 1) will enlarge the permutation approximation error, both of which
may cause detriment to the final performance. Luckily, according to Figure 10, the performance is stable when changing τ
by 10 or 1/10 times around the default value, implying the high stability of our method.

About top-n most frequent codewords: In Figure 4 (main paper), we compare sampling top-n most frequent codewords
and our method. We display an example of 0.44-bit top-n codewords here: 0 42 16 64 65 128 129 255 256 384 448 449 511510508 . It
shows the top-n codewords tend to choose adjacent codewords more frequently, which could hinder the diversity of the
codebook. By contrast, as shown in Figure 5 (main paper), our learned 0.44-bit method outputs diverse codewords, yielding
better performance particularly at 0.56-bit from 61.7 to 64.3.
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Figure 8. Comparison of codewords learning processes when using kernel-wise/channel-wise codewords and selection-based/product-
quantization-based learning. The corresponding experimental results are already provided in Figure 4 (Middle) (main paper). All exper-
iments are based on 0.44-bit settings with n = 16, and are performed on ImageNet upon ResNet-18. We observe that, when both using
selection-based learning, kernel-wise codewords in (a) converge much faster (within 25× 103 steps) than channel-wise codewords in (b);
codewords with product-quantization-based learning in (c) and (d) also converge slower than (a), and are likely to overlap during training
which degenerates the codebook diversity.
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(a) Selection, kernel-wise (ours)
(b) Selection, channel-wise

(c) Product quantization, 
    kernel-wise

(d) Product quantization,
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Figure 9. Numbers of different codewords when using selection-based/product-quantization-based learning, as a supplement to Figure 4
(Right) (main paper). (a)-(d) correspond to the experiments in Figure 4 (Right) (main paper) and Figure 8. Experiments are performed
on ImageNet upon ResNet-18. We provide four settings, including 0.78-bit, 0.67-bit, 0.56-bit and 0.44-bit, with n = 128, 64, 32 and 16,
respectively. We observe that the sub-codebook highly degenerates during training in (c) and (d), since codewords tend to be repetitive
when being updated independently. While in (a) and (b), the diversity of codewords preserves, which implies the superiority of our
selection-based learning.



Figure 10. Sensitivity analysis for hyper-parameters including the iteration number k and the temperature τ , as adopted in Equation 6
(main paper) and also clearly illustrated in Figure 6. Experiments are conducted on the CIFAR10 dataset with 0.56-bit ResNet-18 and
VGG-small, respectively. Results are averaged over three runs with different random seeds. Both hyper-parameters are insensitive around
the default values k = 10 and τ = 10−2.

A two-step recipe with product quantization. Given the purpose of attaining a compact BNN, we also conduct an
intuitive two-step baseline method: at first, load parameters of a standard BNN (ReActNet-18, from the open-sourced model)
as the pre-trained model; then perform product quantization on the binary weights to compress the BNN. By this method,
we achieve 59.1% accuracy on ImageNet under 0.56-bit, and the sub-codebook degeneration still exists. Such result is much
inferior to our Sparks under 0.56-bit (64.3%).

Symbol table. We list the definition and usage of important symbols in Table 5.
Whether indexing process hinders valid acceleration: No, the indexing process of binary kernels does not hinder valid

acceleration. (1) Indexing n codewords is very cheap, e.g., only 32 codewords for our 0.56-bit model (< 0.5 nanosecond on
our FPGA). (2) Indexing 3× 3 pre-calculated results (3× 3 codeword ⊛ 3× 3 feature region, see § 3.4 of the main paper) is
also negligible based on our implementation with a Lookup Table (LUT) that stores 3×3 pre-calculated results: The practical
LUT size, instead of n × Cin ×H ×W by dividing input feature maps into 1 × 3 × 3 slices, and sending only one slice to
a Processing Engine (PE) at each clock cycle. This leads to very low latency for the lookup process, e.g., LUT size is 32 for
our 0.56-bit model (< 0.5 nanosecond for indexing), which is easily implemented in the current clock cycle.

C. Object Detection
C.1. Implementation

We evaluate our method for object detection on two benchmark datasets: PASCAL VOC [2] and COCO [9]. We follow
the standard data split settings [19]. Regarding the PASCAL VOC dataset, we train our model on both the VOC 2007 and
VOC 2012 trainval sets, which together contain about 16k natural images of 20 different categories in total. We evaluate the
performance on VOC 2007 test set that is composed of about 5k images. COCO dataset (2014 object detection track) is a

Table 5. The definition and usage of important symbols.

Symbol Definition and Usage

w ∈ RK×K Convolutional kernel with the kernel size K.
ŵ ∈ {−1,+1}K×K Selected binary kernel for w. There is ŵ ∈ sub-codebook U ⊆ codebook B = {−1,+1}K×K .
N ∈ Z+ N = |B|, the codebook size, N = 512 when K = 3.
n ∈ Z+ n = |U|, the sub-codebook size, e.g., for 0.56-bit Sparks, n = 32.
B ∈ {±1}K2×N Column by column indexing from |B|.
U ∈ {±1}K2×n Column by column indexing from |U|.
V ∈ {0, 1}N×n A pre-defined selection matrix.
k ∈ Z+ The number of iteration to approximate the permutation matrix in Equation 8 (main paper).
τ ∈ R+ A small temperature to approximate the permutation matrix in Equation 8 (main paper).
X ∈ RN×N A randomly initialized, learnable matrix.
PGS ∈ RN×N PGS = Sk((X + ϵ)/τ), the approximated permutation matrix for propagation, not a 0/1 matrix.
Preal ∈ {0, 1}N×N Preal = Hungarian(PGS), the outputted permutation matrix, a doubly stochastic 0/1 matrix.



Table 6. Performance comparisons with object detection methods on the PASCAL VOC dataset. Sparks∗ indicates using the two-step
training method and the generalized Sign/PReLU functions (as adopted in [12] for image classification).

Method Bit-width mAP Storage BOPs Method Bit-width mAP Storage BOPs
(SSD300) (W/A) (%) Saving Saving (Faster R-CNN) (W/A) (%) Saving Saving

Full-precision 32/32 72.4 1× 1× Full-precision 32/32 74.5 1× 1×

BNN [4] 1/1 42.0 32× 64× BNN [4] 1/1 35.6 32× 64×
XNOR-Net [14] 1/1 50.2 32× 64× XNOR-Net [14] 1/1 48.4 32× 64×
Bi-RealNet [11] 1/1 63.8 32× 64× Bi-RealNet [11] 1/1 58.2 32× 64×
BiDet [19] 1/1 66.0 32× 64× BiDet [19] 1/1 59.5 32× 64×

Sparks (ours) 0.78/1 65.2 41.0× 108× Sparks (ours) 0.78/1 58.9 41.0× 88×
Sparks (ours) 0.56/1 64.3 57.1× 285× Sparks (ours) 0.56/1 57.7 57.1× 214×

Sparks∗ (ours) 0.78/1 68.9 41.0× 108× Sparks∗ (ours) 0.78/1 66.2 41.0× 88×
Sparks∗ (ours) 0.56/1 68.0 57.1× 285× Sparks∗ (ours) 0.56/1 65.5 57.1× 214×

Table 7. Performance comparisons with object detection methods on the COCO dataset. Sparks∗ indicates using the two-step training
method and the generalized Sign/PReLU functions (as adopted in [12] for image classification).

Method Bit-width mAP AP50 AP75 APs APm APl Method Bit-width mAP AP50 AP75 APs APm APl

(SSD300) (W/A) (%) (%) (%) (%) (%) (%) (Faster R-CNN) (W/A) (%) (%) (%) (%) (%) (%)

Full-precision 32/32 23.2 41.2 23.4 8.6 23.2 39.6 Full-precision 32/32 26.0 44.8 27.2 10.0 28.9 39.7

BNN [4] 1/1 6.2 15.9 3.8 2.4 10.0 9.9 BNN [4] 1/1 5.6 14.3 2.6 2.0 8.5 9.3
XNOR-Net [14] 1/1 8.1 19.5 5.6 2.6 8.3 13.3 XNOR-Net [14] 1/1 10.4 21.6 8.8 2.7 11.8 15.9
Bi-RealNet [11] 1/1 11.2 26.0 8.3 3.1 12.0 18.3 Bi-RealNet [11] 1/1 14.4 29.0 13.4 3.7 15.4 24.1
BiDet [19] 1/1 13.2 28.3 10.5 5.1 14.3 20.5 BiDet [19] 1/1 15.7 31.0 14.4 4.9 16.7 25.4

Sparks (ours) 0.78/1 13.4 28.6 10.6 5.3 14.5 20.8 Sparks (ours) 0.78/1 15.6 30.7 14.0 4.7 16.5 25.1
Sparks (ours) 0.56/1 12.5 27.7 10.0 4.9 14.1 19.6 Sparks (ours) 0.56/1 14.9 29.9 13.6 4.1 15.7 24.5

Sparks∗ (ours) 0.78/1 18.6 35.7 17.4 7.1 19.3 31.0 Sparks∗ (ours) 0.78/1 21.2 37.5 18.2 7.8 22.6 31.7
Sparks∗ (ours) 0.56/1 17.6 33.9 17.0 6.6 18.1 29.4 Sparks∗ (ours) 0.56/1 20.0 36.8 17.4 7.0 20.2 30.5

large-scale dataset that collects images from 80 different categories. We train our model with 80k training images as well
as 35k images sampled from the validation set (denoted as trainval35k [1]), and carry out evaluations on the remaining 5k
images in the validation set (minival [1]).

We follow BiDet [19] for the basic training settings including parameters and data augmentation methods. Specifically, we
train 50 epochs in total with batch size 32 and the Adam optimizer. We initialize the learning rate to 10−3 which decays by
multiplying 0.1 at the 6th and 10th epoch. We consider two typical architectures including SSD300 [10] (with VGG-16 [16])
and Faster R-CNN [15] (with ResNet-18 [3]) to verify the effectiveness and generalization of our method.

C.2. Results

Evaluation on PASCAL VOC. We contrast Sparks against SOTA detection binarization methods including the standard
BNN [4], Bi-RealNet [11], XNOR-Net [14] and BiDet [19] in Table 6. We implement two different versions of Sparks
including 0.56-bit and 0.78-bit. Compared with BiDet, our 0.56-bit method obtains about model compression by twice
(0.56 vs 1) and computation acceleration by more than 3 times (e.g. 285 vs 64 on VGG16+SSD300). Besides, by adopting
the two-step training scheme and the generalized Sign/PReLU functions, our methods achieve new records on 1-bit object
detection.

Evaluation on COCO. To further assess the proposed method on a larger and more challenging dataset, we conduct
experiments on COCO. Comparisons with SOTA methods are provided in Table 7. Following the standard COCO evaluation
metrics, we report the average mAP over different IoU thresholds from 0.5 to 0.95, the APs at particular thresholds: AP50



and AP75, and the scale-aware metrics: APs, APm and APl. The benefits of Sparks are still observed, namely, clearly saving
in complexity. Results with SSD300 indicate that our 0.78-bit Sparks even defeats BiDet in terms of all evaluation metrics.
We speculate that Sparks reduces information redundancy by selecting essential codewords, and thus eliminates some of the
false positives. In addition, our method performs stably for both the one-stage SSD300 and the two-stage Faster R-CNN,
implying its robustness on different backbones. In addition, results of Sparks∗ indicate that our method also has compatibility
with the two-step training scheme and the generalized functions.

D. Discussion and Limitation
In this research, we propose Sparks that largely enhances both the storage and computation efficiencies of BNNs. Our work

is motivated by that kernel-wise codewords are highly clustered. For this reason, we propose a novel selection-based approach
for kernel-wise sub-codebook learning instead of previously used channel-wise product quantization. By extending our
Sparks with more layers or other blocks, the performance could surpass the standard BNN model with still fewer parameters
and BOPs. This provides us with a new research line of training lighter and better BNN models. As an open-sourced research
on well-used benchmarks, our method does not raise ethical concerns. However, one should notice that compressing a model
needs to access the model parameters which might need further protection methods for the model privacy.
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