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This document contains additional information on the
method and experiment presented in the main paper, specifi-
cally as an extension of Sec.3 and Sec.4. We add more quan-
titative and qualitative results, and in the final section, we
demonstrate the potential application usages of our model.

A. Network Architecture
We demonstrate a novel coarse-to-fine human reconstruc-

tion framework for using both the coarse shape and explicit
occupancy. Our design is motivated by both optimization
considerations and computational efficiency. Explicit occu-
pancy allows the generative features to be optimized in a
way that learns the global ordinal relations across 3D voxels
with discriminators (whereas implicit models are often local).
The coarse shape with an implicit model enables continu-
ous surface reconstruction with effective computational cost
(whereas explicit volumes are often costly).

A.1. Network Details

2D image encoder Our image encoder E applies the Unet
structure using a 2D Stacked Hourglass [4], with a stack
number of 3 as the backbone, and we remove MaxPooling
Layers and Residual Layers in our experiments. We take an
image with a spatial resolution of 512 × 512 as input and
output a 32 dimensional vector with a resolution of 128×128.
Then, we take the image feature from the last stacked layer
and unproject it into the 3D space as volume feature F for
the 3D CNN.

3D Generator For 3D generator G3d, we applies the Unet
structure using a 3D Stacked Hourglass, with a stack number
of 2, as the backbone. The 3D generator takes a raw explicit
volume as input with a spatial resolution of 128×128×128,
and the channel number of the raw volume feature is 33,
where 3D body pose P is a one dimensional vector and
image volume feature F ∈ R32. The 3D generator G3d con-
sists of 3D convolution layers and upsample layers. The
depth of 3D CNN is equal to 3, with numbers of chan-
nels {48, 64, 96}, kernel sizes {3, 3, 3}, and strides {2, 2, 2}.

There are 3D batch normalization layers in between. To
regress the explicit 3D volume feature, we keep the inter-
mediate features of each stack, and then feed them into the
next implicit function, and the losses from all the stacks are
aggregated for parameter update.

3D Discriminator The discriminator D3d takes a 128 ×
128× 128 volume as input, and outputs a real number in 0,
1. The discriminator consists of four 3D convolution layers,
with numbers of channels {64, 128, 256, 1}, kernel sizes
{4, 4, 4, 4}, and strides {2, 2, 2, 2}. There are leaky ReLU
layers of parameter 0.2 and batch normalization layers in
between.

Coarse and fine implicit function The coarse MLP C de-
codes an occupancy value for each query point X, as well
as an intermediate global features F∗, where F∗

X ∈ R256.
The inputs of the coarse MPL are 3D position X ∈ R63,
concatenate with explicit trilinear interpolated volume fea-
ture Fg

3d,X ∈ R33. Same as NeRF [3], we use the positional
encoding for each 3D position, which can enhance the high-
frequency details. The number of neurons of coarse MLP C is
{96, 1024, 512, 256, 128, 257}, with non-linear activations
leaky ReLU and a Sigmoid layer at the end. Our fine surface
reconstruction is based on another multi-layer perceptron,
with the number of neurons {447, 1024, 512, 256, 128, 1},
this fine MLP Cf is designed to decode the fine-grained
occupancy field. We use 0.5 level-set occupancy field for
our fine surface representation. Same as C, we use the po-
sitional encoding for each 3D position. For Cf , it takes 3D
position X, surface normal features Fn

x and global interme-
diate features F∗

X as inputs, where X ∈ R63, Fn
x ∈ R32×4,

F∗
X ∈ R256. And the output of Cf is fine-grained occupancy

for each query point.

A.2. Surface Sampling

Same as [7], we sample points using a mixture of uniform
volume samples and importance sampling around the surface

1



using Gaussian perturbation. Importance sampling enhances
the surface details, while background sampling within the
uniform volume removes background ambiguity and noise.
For fast convergence, for each object, we precompute and
save the occupancy of each sampling point. The total number
of sampling points per object is Nt, Nt = 100000. During
each iteration, we do batch processing with the number of
samples N = 8000 and the ratio of importance sampling to
uniform volume sampling is 8:1.

B. Quantitative Results
B.1. The requirement of GT SMPL

In our experiment, we used GT SMPL to provide fair and
quantitative evaluation results that can be compared with
other baselines that rely on SMPL. We admit that the pose
errors in SMPL estimate affect the final 3D reconstruction
results, and we use GT SMPL to factor out such pose errors
as shown in Fig. 1. To be further fair, we include Tab.1
which summarizes the reconstruction accuracy given the
predicted SMPL where our method still demonstrates better
reconstruction results than PIFuHD and ICON. We kindly
note that GT SMPL is not a requirement for testing in-the-
wild images, and we attain SMPL estimates with an existing
method [10, 11].

Input Reconstruction w/ GT SMPL Reconstruction w/o GT SMPL

Front Side Front Side

Figure 1. 3D reconstruction visualization quality with and with-
out GT SMPL. The main changes between them are colorized
where the inaccurate 3D pose affects reconstruction accuracy.

Method PIFuHD ICON+PS Ours+PS ICON+GS Ours+GS

Chamfer ↓ 2.890 1.535 1.224 0.965 0.798

P2S ↓ 2.631 1.479 1.062 0.848 0.808

Table 1. Comparison with other baseline methods. Here we show
the quantitative comparison results for human reconstruction from
an image where GS denotes the inference with ground-truth SMPL
and PS with predicted SMPL [11].

B.2. Cross-dataset validation

We conduct the cross-dataset validation on MultiHuman-
Dataset [12], this dataset includes the case with natural occlu-
sion by objects and people and provides 3D surface ground

Cross-dataset Full Body Image Reconstruction
Method SMPL Chamfer ↓ P2S ↓ Normal ↑
PIFu [6] ✗ 3.768 3.989 10.879
PIFuHD [7] ✗ 3.255 3.076 11.358
ICON [8] ✓ 1.467 1.389 11.986
Ours ✓ 1.359 1.402 11.932

Table 2. Comparison with SOTA on Human Modeling.

truth and fitted SMPL for each person. We test on ten unseen
objects with full body image as inputs, and calculate the
average values of Chamfer distance, P2S, and normal PSNR
over these testing subjects. For normal error, we render front,
back, left and right side normal maps for each object and
calculate the average normal error. Since ICON [8] and our
model require SMPL [2] as human body prior, for evalua-
tion, we use ground truth SMPL during the comparison for
ours and ICON. The numerical results in Tab. 2 show that
for full-body image reconstruction, our model has compa-
rable performance to other models. Although our globally
consistent volume feature slightly sacrifices local details, it
still makes feasible reconstructions with better contour when
given a full-body image. We also conduct an ablation study,
testing on MultiHuman-Dataset. As shown in Tab. 3, our
coarse-to-fine design can achieve better performance than
other designs [6–8].

Method Chamfer↓ P2S↓ Normal↑
Ours - coarse MLP - fine MLP 2.403 2.389 6.034
Ours - fine MLP 1.636 1.844 11.348
Ours w/o GT SMPL 1.977 1.802 11.455
Ours 1.359 1.402 11.932

Table 3. Ablation study results. We show the average values of
Chamfer distance, P2S, and normal PSNR over 10 testing subjects
on MultiHuman-Dataset [12]

B.3. Texture Inpainting

Our main contribution is 3D reconstruction, and texture
inpainting is for application. Therefore, for the inpainting
model, we adopt an existing human inpainting network [9]
and designed two independent inpainting models: frontside
inpainting and backside inpainting. Each inpainting model is
based on partial body image and surface normal map. For the
frontside inpainting model, we train with partial body image
and conditioned on the surface normal map Nf , which is
supervised by the ground truth full body image. For the back-
side inpainting model, we train with the same partial body
image as well as a mirrored backside normal map Nb, and
then supervised by the ground truth full-body image. During
the inference time, we can get the complete full body texture
by using view-progressive texture inpainting. In Fig. 3, we
illustrate our method for generating a complete texture of
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Figure 2. Progressive texture inpainting During the inference
process, given our reconstructed model, we render the frontside
normal Nf and the backside normal Nb, and use the partial body
image as input. We apply two independent inpainting models to
inpaint the front and back sides. After obtaining the complete front
and back images, we unproject them into 3D space and render the
side views, and then inpaint them again. After 3D warping to other
views, we can finally get the complete body texture.

Geometry

Texture

Figure 3. Texture inpatining and 3D reconstruction results

a human body from a partial input image and a complete
geometry. Our approach involves synthesizing the image of
a complete human body from multiple viewpoints in a pro-
gressive manner, using surface rendering, texture inpainting,
and 3D warping techniques. 1) To perform texture inpaint-
ing, we first render the surface normal map for the front
and back views of the human body, based on the complete
geometry and partial input image. We then apply frontside
and backside inpainting models to complete the front and
back images, respectively. Next, we reproject the complete
front and back images into 3D space and obtain the vertices
colors from these views. 2) As the side view texture remains
incomplete, we re-render the side view into 2D image space
and perform inpainting again. 3) We iterate these steps to ob-
tain a fully textured 3D model, which enables us to generate
novel views of the human body from the partial input image.
Finally, we can obtain the complete texture of the human
body as shown in Fig.3.

B.4. Accumulative occlusion-to-reconstruction

As shown in Fig 7 (row 1), our model can achieve high
quality reconstruction results comparable to other models

Human Body Reconstruction from 2D Inpainted Image
Method SMPL Chamfer ↓ P2S ↓
PIFuHD [7] ✗ 3.714 3.140
ICON [8] ✓ 1.175 1.126
Ours ✓ 0.989 1.013

Table 4. Comparsion with SOTA on 3D reconstruction from 2D
inpainted image.

when given a full-body image. Since other models. PIFu [6],
PIFuHD [7] and ICON [8] only take into account fine-
grained local image features and cannot enforce global con-
sistency. Therefore, they can only achieve high quality re-
construction of visible parts, but are unable to reconstruct
the whole human body from large-occluded image. As seen
in Fig. 7 (row 2 to 5), we gradually change the occluded
area of the image from 20% to 80%, and the reconstruction
quality of other models decreases dramatically, while our
model is able to reconstruct the whole body mesh with minor
errors.

B.5. 2D inpainting first and then 3D reconstruction

We acknowledge that the inpainting-to-reconstruction ap-
proach could be a meaningful baseline method. To demon-
strate this, we apply a diffusion-based 2D inpainting model
[5] to the image of a partial body and reconstruct a complete
3D human with ICON and PIFuHD. Tab. 4 shows the quan-
titative evaluation results on the sub-sampled Thuman2.0
dataset, and Fig. 4 shows a sample of in-the-wild 2D in-
painting which often struggles to complete realistic human
structure for the bigger holes. The inpainting artifacts such
as distortion are directly propagated to the 3D reconstruc-
tion results. Meanwhile, our 3D generative pipeline enables
globally coherent and plausible 3D reconstruction.

B.6. Evaluation on Missing vs. Observed

For more concrete analysis, we break down of the errors
based on pixels that are missing vs observed. We break down
the graph in Fig. 8 of the main paper into missing and ob-
served pixels as described in Fig. 5. Based on the observed
pixels in Fig. 5-(left), our method shows comparable perfor-
mance to ICON. However, this performance gap is magnified
for the missing pixels in Fig. 5-(right) when the impact of
occlusion is significant.

C. Applications

C.1. Reconstruction From a Group-shot Image

Obtaining full-body images of all individuals in a group-
shot image can be challenging, as some individuals may be
naturally obscured by others. In such cases, our model offers
a solution for reconstructing multiple individuals from the



Figure 4. 3D reconstruction from incomplete images and inpainted 2D images. We present comparative results with other baseline
models. For a given incomplete image (First colume), our model robustly completes the full human body with high-fidelity local details,
while others struggle to complete the invisible parts of the body. We demonstrate 2D inpainting-to-3D reconstruction (second column), which
ensures completeness of the human body. However, the errors caused the 2D inpainting can directly propagate into the reconstructed model.
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Figure 5. Occlusion-to-accuracy graphs. We show the observed (left) and missing (right) body parts measured by Chamfer distance.

group photo. As illustrated in Fig. 6, our model can recon-
struct individuals even from occluded regions of the image,
without requiring multi-view or camera calibration inputs
that are needed for other multi-view reconstruction methods.
We can apply our model to reconstruct each person in the
same image, one by one. Our qualitative visualization results
demonstrate that our model is capable of achieving feasible
reconstructions from various challenging viewports, such
as individuals facing different directions or being partially
occluded by others. These findings underscore the potential
of our model as a practical tool for reconstructing individuals
from a single-view group-shot image.

C.2. In-the-wild Reconstruction

For in-the-wild testing, we use photos from Deepfash-
ion [1] dataset, where we obtain the 3D body model by
applying existing fitting method [10, 11]. We first estimate

the SMPL pose from the input partial body image and render
the estimated SMPL pose on the partial body image, and
then we can remove the background to get the whole body
mask. Since we apply a weak perspective projection, for the
single-view camera matrix, we can directly crop and cen-
ter the image without camera calibration. Shown in Fig. 4
are samples of our in-the-wild reconstruction results. De-
spite training our model on a limited number of objects,
we demonstrate promising in-the-wild reconstruction results
compared to other baselines.

References
[1] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou

Tang. Deepfashion: Powering robust clothes recognition and
retrieval with rich annotations. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
1096–1104, 2016. 4



Group shot image     Input view                          coarse reconstruction                                                                fine reconstruction                

Figure 6. Reconstruction from a group-shot image Our model can be applied to reconstruct from the group image. The first column
shows a single view of the group image; the second column shows the different persons in the group image. Then, we show our coarse
reconstruction and fine reconstruction from four views: front, right, left and back. The group-shot image is rendered from MultiHuman [12]
dataset

[2] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J Black. Smpl: A skinned multi-
person linear model. ACM transactions on graphics (TOG),
34(6):1–16, 2015. 2

[3] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
1

[4] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In European con-
ference on computer vision, pages 483–499. Springer, 2016.
1

[5] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
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