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1. Implementation Details
Appearance Flow Sampling: As described in Section 3.2,
we adopt the similar Gaussian sampling strategy [13] to
avoid the bad local minima problem. The sampling process
can be written as follow:
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where n is the kernel size. Fi,j represents the features
around the sample center and Fout is the output feature.
αi,j is the sampling weight calculated as:
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where ∆h and ∆v are the horizontal and vertical distance
between the sampling center and feature Fi,j , respectively.
σ is the variance of the sampling kernel.
Noise Construction: During the pre-processing stage, we
randomly add different combinations of degradation to the
clean images. For a fair comparison, we use the same set-
ting for raindrop construction as BIDeN [5]. The model for
rainstreak and snow is:

Irain/snow(x) = J(x)(1−m(x)) +A ∗m(x), (9)

and the model for haze is:

Ihaze(x) = J(x)t(x) +A ∗ (1− t(x)), (10)

where x is the image pixel, I is the observed intensity, J is
the scene radiance, A is the global atmospheric light, and m
is the mask of rain streak and snow. t denotes the transmis-
sion map.

The model for reflection is formulated as:

Ireflection(x) = T (x) +R(x) ∗ V (x), (11)

and the model for watermark composition is:

Iwatermark(x) = J(x)(1− w(x)) +A ∗ w(x), (12)

∗ Work done during an internship at Baidu.
† Corresponding author: Yi Yang.

where T is the transmission layer, R is the reflection layer,
and V denotes the vignette mask. J is the scene radiance, A
is the global atmospheric light, and w represents the water-
mark image.

As for shadow removal, we use the same setting on
SRD [12] dataset with the masks generated by DHAN [3].
The reflection image R is processed by a Gaussian smooth-
ing kernel with a random kernel size, where the size is in
the range of 3 to 17 pixels during training, and fixed to 11
pixels during testing. For both Eqs. (9), (10) and (12), we
set A between [0.8, 1.0] during training, and fix A = 0.9 for
testing. Before the random combination, all masks are ran-
domly rotated with angles [0◦, 90◦, 180◦, 270◦] for more
robust pretraining.
Dataset & Experimental Settings: We compared the pro-
posed CPNet mainly with Restormer [20], All-in-one [7],
BIDeN [5], MPRNet [21], RCDNet [15], DHAN [3] and
Auto-Exposure [4] method. The performance of the com-
pared methods is acquired through former publicly avail-
able pretrained models or implementation codes 1 2 3 4 5

6. Note that since the original code of All-in-one [7] is
not publicly available, the qualitative results are based on
our implementation. For a fair comparison, we trained and
tested all methods under the same setting as BIDeN [5] with
the same mask dataset7.

In particular, Task-I is based on the CityScape [2]
dataset, where we use the original test set as our training
set (2975), and the validation set as our test set (500). The
test set for all source components contains a fixed number of
500 images. The mask dataset contains four different masks
with various intensities, including rainstreak (1620), rain-

1https://github.com/leftthomas/Restormer
2https://github.com/JunlinHan/BID
3https://github.com/swz30/MPRNet
4https://github.com/hongwang01/RCDNet
5https://github.com/vinthony/ghost-free-shadow-

removal
6https://github.com/tsingqguo/exposure-fusion-

shadow-removal
7https : / / drive . google . com / drive / folders /

1wUUKTiRAGVvelarhsjmZZ_1iBdBaM6Ka
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Table 6. Quantitative results of several structural variants on raindrop + snow removal on CityScape [2] dataset. The best performances
under each case are marked in bold. (S)W-MSA represents the two successive Swin-Transformer blocks [10].

Module Vanilla
Encoder BIDeN MHA FFN Ours

(S)W-MSA MDTA LeFF GDFN MDTA+GDFN
PSNR ↑ 28.71 29.16 32.25 31.77 31.15 31.89 32.02
SSIM ↑ 0.822 0.881 0.918 0.887 0.864 0.903 0.910

FLOPs ↓ 325G 344G 216G 90G 67G 93G 102G

drop (3500), haze (2975), and snow (3500). The masks for
rainstreak are acquired from Rain100L and Rain100H [17].
For raindrop masks, we model the droplet shape and prop-
erty using the meta-ball model [1], following the same set-
ting as BIDeN [5]. Haze masks are acquired from Foggy
CityScape [14] with three different intensities, while the
masks for snow are selected from Snow100K [9].

As for Task-II, the training set contains 3661 natural im-
ages as ground truth, where 861 images are adopted from
the training set of [11], 1800 images are borrowed from
the training set of Rain1800 [17], and the rest 1000 images
are selected from the training set of Snow100K [9]. The
training masks are identical to Task-I. After training under
three cases, these models are respectively tested on three
task-specific real-world datasets, which consist of 1000 im-
ages from SPAData [16] test set for rainstreak, 249 images
from DeRaindrop [11] for raindrop, and 1329 images from
DeSnowNet [9] for snow removal.

As for Task-III, we select the shadow dataset from [5].
The dataset is based on SRD [12], which consists of 2680
paired shadow masks, shadow-free images, and shadow im-
ages as the training set, and the test set contains 408 images
for each type of degradation. The shadow masks are gen-
erated with DHAN [3] method. The algorithm for adding
reflection to images is acquired from [22], we select 3120
images from the reflection subset as the reflection layer. We
use 3000 paired RGB watermark images and masks for the
watermark effect, which are acquired from the training set
of LVM [8]. Following the data split of SRD, the training
set contains 2580 reflection layer images and 2460 water-
mark images/masks.

2. Network Details

Transformer Encoder: As mentioned in Section 3.1, this
paper mainly focuses on exploring a context-aware pre-
training scheme, while the transformer design in CPNet
is rather flexible. We replace the Multi-Head Attention
(MHA) and Feed Forward Networks (FFN) with several
cutting-edge modules, which are Shifted Window based
Self-Attention (SW-MSA) [10], Multi-Dconv head Trans-
posed Attention (MDTA) [20], Locally-Enhanced Feed-
Forward (LeFF) [19] and Gated Dconv Feed-Forward Net-
work (GDFN) [20]. As shown in Table 6, each variant is
evaluated in terms of Peak Signal-to-Noise Ratio (PSNR),

structural similarity (SSIM), and floating point of opera-
tions (FLOPs). All experiments are conducted under the
same setting and environment for joint raindrop and snow
removal tasks. It can be clearly observed that more sophis-
ticated modules can further boost the performance of our
CPNet. In this work, we adopt a more lightweight struc-
ture [20] (MDTA + GDFN) considering the balance be-
tween accuracy and efficiency.
Fine-tuning Network: The brief structure of our texture
finetuning network is shown in Figure 10, which is a sim-
ple autoencoder structure. During the pretraining stage, we
adopt a ℓ1 loss for structure reconstruction encouraging the
model to be more robust under different types of degrada-
tion. As for finetuning, we use a ℓ2 reconstruction loss to
impose further supervised constraint on image details such
as texture, which is deployed as:

Lt
ℓ2 = ∥Igen − Igt∥2 . (13)

where Igen is the predicted images and Igt means the
ground truth. Meanwhile, we adopt a default perceptual
loss [6] with a pretrained VGG16, which consists of two
parts, i.e., the content loss Lt

c and style loss Lt
s:
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where ϕpooli represents the feature map after pooli layer,
ϕstyle
pooli

= ϕpooliϕ
T
pooli

, and N is the number of feature maps.
The overall training loss for the refinement network Nr is
Lt
ℓ2
+ λ1(Lt

c + Lt
s), λ1 denotes the hyper-parameter which

are set as 0.01 in this paper.

Figure 10. Architecture of the texture refinement network.



Table 7. Quantitative comparisons on different fine-tuning strategies. Nr is the texture refinement network. MHP represents the multi-head
prediction module.

Finetuning Input MPRNet Nr Nr + MHP

NIQE ↓ 4.87 4.10 4.13 4.02
BRISQUE ↓ 27.82 28.66 25.58 25.11

Table 8. Detailed architectures of the proposed modules, in which Hs means the appearance head, Ht is the structure head, Dimg is the
discriminator judging whether the image is true or false, and Datt represents the discriminative branch predicting the attribute label of
degradation type with dimension n. Conv(c,k,s) denotes a standard convolutional layer with channel c, kernel size k and stride s. GConv()
represents the gated convolution layer [18] and σ is the sigmoid activation.

Ht Hs Dimg Datt

GConv(256,3,1),BN,GELU

× 3

with skip connection

GConv(256,3,1),BN,GELU

× 3

with skip connection

Conv(64,3,2),IN,RELU

Conv(128,3,2),IN,RELU

Conv(256,3,2),IN,RELU Conv(256,3,2),IN,RELU

GConv(256,3,1),BN,GELU GConv(256,3,1),BN,GELU Conv(512,3,2),IN,RELU Conv(512,3,2),IN,RELU

GConv(128,3,1),BN,GELU GConv(128,3,1),BN,GELU Conv(1024,3,2),IN,RELU Conv(1024,3,2),IN,RELU

GConv(64,3,1),BN,GELU FC(1024),IN,RELU FC(1024),IN,RELU

GConv(32,3,1),BN,tanh FC(1) FC(n), σ

As shown in Table 7, we further unlock the Multi-Head
Prediction (MHP) module along with refinement network
Nr for fine-tuning, leading to a higher performance since
the gradients from the textual information can directly guide
the training of the appearance flow map. We also observe
a marginal performance improvement with a more complex
refinement network, which further indicates the effective-
ness of our pre-trained model. We also show the detailed
architecture of the multi-head prediction module as well as
the multi-head discriminator in Table 8.

3. More Results
Figure 11 and Figure 12 show more qualitative com-

parisons and results for Task-I. More results on real-world
Task-II are given in Figure 13, Figure 14 and Figure 15.
Figure 16 and Figure 17 show the results for Task-III under
seven different noise combinations. It can be seen that our
method stably produces well-structured results with finer
details while remaining robust to different noise combina-
tions and training strategies.

Input Restormer All-in-One BIDeN Ours GT

Figure 11. More comparisons with other SOTA methods on Task-I. Please zoom in to see the details.



Input Ours GT Input Ours GT

Figure 12. More qualitative results of the proposed CPNet under each case in Task-I. Case (1): rain streak, (2): rain streak + snow, (3):
rain streak + light haze, (4): rain streak + heavy haze, (5): rain streak + moderate haze + raindrop, (6) rain streak + snow + moderate haze
+ raindrop. Every two rows represent one case. Please zoom in to see the details.



Input BIDeN (3) Ours Input BIDeN (3) Ours
Figure 13. More qualitative comparisons on real-world rainstreak removal scenario. BIDeN(3) represents the model that is jointly trained
with three noise combinations: rainstreak + raindrop + snow. Please zoom in to see the details.



Input BIDeN (3) Ours Input BIDeN (3) Ours

Figure 14. More qualitative comparisons on real-world raindrop removal scenario. Please zoom in to see the details.



Input BIDeN (3) Ours Input BIDeN (3) Ours

Figure 15. More qualitative comparisons on real-world snow removal scenario. Please zoom in to see the details.



Input Ours GT Input Ours GT

Watermark Removal

Reflection Removal

Shadow Removal

Figure 16. More qualitative results on Task-III. Please zoom in to see the details.



Input Ours GT Input Ours GT

Shadow + Reflection

Shadow + Watermark

Reflection + Watermark

Shadow + Reflection + Watermark

Figure 17. More results on Task-III with different noise combinations. Please zoom in to see the details.
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