
In the supplementary material, we first elaborate on the
proof of non-overlapped set partition in §A, and then provide
more implementation details of the network architecture,
training schemes, and ablation baselines in §B. Finally, we
present more ablative studies for hyper-parameter analyses
in §C and visualization of quantitative results in §D. We also
discuss the difference of Axis-attention in §E and limitation
of DSVT in §F.

A. Proof of Non-overlap Set Partition

Definition A.1 (Dynamic set partition) N is the number
of non-empty voxels for a specific window, and τ is the
maximum number of sparse voxels allocated to each local
set. The required number of sub-sets in this window is
computed as follows,

S = ⌊N
τ
⌋+ I[(N % τ) > 0]. (1)

For the j-th set (denoted as Qj = {qjk}
τ−1
k=0), the index of

voxel can be computed:

qjk =
⌊
q̃jk

⌋
=

⌊
(j × τ + k)

S × τ
×N

⌋
, for k = 0, ..., τ − 1.

(2)
The following theorems show that our algorithm formulation
in the main paper satisfies all the necessary concepts of the
proposed dynamic set partition. The case of N = S × τ is
trivial. Now suppose the case of (S − 1)× τ < N < S × τ .
Theorem A.2. (Non-overlap): For any two local sets, 0 ≤
i, j ≤ S − 1, then Qi ∩Qj = ∅.
Proof. Obviously, this theorem can be converted to verify
the non-overlap of two neighboring sets. Specifically, for
any 1 ≤ j ≤ S − 1, Qj−1 ∩Qj = ∅. We formulate qj0 (the
first voxel index in Qj) as follows,

qj0 =

⌊
j ×N

S

⌋
=

⌊
N j

0 +
kj0
S

⌋
= N j

0 , 0 ≤ kj0 ≤ S − 1.

(3)
Then we can compute the last voxel index in Qj−1:

qj−1
τ−1 =

⌊
(j − 1)× τ + τ − 1

S × τ
×N

⌋
=

⌊
j ×N

S
− N

S × τ

⌋
=

⌊
N j

0 +
kj0
S

− N

S × τ

⌋
.

(4)
Note that (S − 1)× τ < N < S × τ , thus S−1

S < N
S×τ < 1

and 0 ≤ kj
0

S ≤ S−1
S . So we have

⌊
N j

0 − 1
⌋
<

⌊
N j

0 +
kj0
S

− N

S × τ

⌋
<

⌊
N j

0

⌋
. (5)

To this end, we can prove that qj−1
τ−1 = N j

0 − 1. For any
1 ≤ j ≤ S − 1, qj−1

τ−1 ̸= qj0, thus Qj−1 ∩Qj = ∅.
Theorem A.3. (Completeness): Q0 ∪Q1 ∪ ...∪QS−1 = U ,
where U = {0, 1, ..., N − 1}.
Proof. If u ∈ {0, 1, ..., N − 1} but u /∈ U , there must exist
two continuous indexes qjk−1 and qjk satisfying qjk−1 < u

and qjk ≥ u+ 1. Thus we have:

(j × τ + k)

S × τ
×N − (j × τ + k − 1)

S × τ
×N > 1. (6)

This yields a contradiction, because N < S × τ , and con-
cludes the proof.
Theorem A.4. (Equivalent): For any j-th subset, 0 ≤ j ≤
S − 1, we have ⌊N

S ⌋ ≤ |Qj | ≤ ⌊N
S ⌋ + 1. |Qj | denotes

the number of valid and unique voxels belonging to j-th set,
which needs to be distinguished from τ .
Proof. We reformulate N as:

N =

⌊
N

S

⌋
× S + res = l × S + res, (7)

where l =
⌊
N
S

⌋
and 0 ≤ res ≤ S − 1. In the case of

res = 0, we have:

q00 = 0, q10 = l, ..., qS−1
0 = (S − 1)× l. (8)

Following the proof of Theorem A.2, we can have:

q0τ−1 = l − 1, q1τ−1 = 2× l − 1, ..., qS−1
τ−1 = S × l − 1,

(9)
which indicates for any j, we obtain |Qj | = l = ⌊N

S ⌋. In
the case of res ̸= 0, we compute the difference between q̃j0
and q̃j+1

0 :

q̃j+1
0 − q̃j0 =

(j + 1)× τ

S × τ
×N − j × τ

S × τ
×N

=
N

S
= l +

res

S
.

(10)

By Eq. (3) and Eq. (10), we have

qj+1
0 =

⌊
(j + 1)×N

S

⌋
=

⌊
j ×N

S
+

N

S

⌋
=

⌊
N j

0 +
kj0
S

+ l +
res

S

⌋
= N j

0 + l +

⌊
res+ kj0

S

⌋
.

(11)
Note that 0 ≤ kj0 ≤ S − 1 and 0 < res ≤ S − 1, therefore
we can easily obtain:

N j
0 + l ≤ qj+1

0 ≤ N j
0 + l + 1. (12)

Finally, following the proof of Theorem A.2, we have:

N j
0 + l − 1 ≤ qjτ−1 ≤ N j

0 + l, (13)

which implies for any j, we have l ≤ |Qj | ≤ l + 1 and
concludes the proof.

B. Implementation Details
In this section, we provide more implementation details

about network architecture (§B.1), ablation baselines (§B.2)
and training schemes (§B.3).

B.1. Network Architecture.

B.1.1 3D Perception on Waymo

As mentioned in the main paper, our detection approach
follows the framework of CenterPoint-Pillar [13] and only
appends our DSVT before BEV backbone while other com-
ponents remained unchanged.
DSVT-P is a single-stride pillar-based sparse backbone,
which adopts the pillar size of (0.32m, 0.32m, 6m) with four
DSVT blocks. Each block is equipped with two DSVT lay-
ers with different set partitioning configurations, (i.e, X-Axis
Partition and Y-Axis Partition). The DSVT layers contains a
rotated set based Multi-Head Self-Attention (MHSA) mod-
ule, followed by a 2-layer MLP with GELU nonlinearity
in between. A LayerNorm (LN) layer is applied after each
MHSA module and each MLP, and a residual connection
is applied after each module. All the attention modules are
equipped with 8 heads, 192 input channels, and 384 hidden
channels. The hybrid window sizes are set to (12, 12, 1) and
(24, 24, 1) by default, and the maximum number of voxels
belonging to each set (τ) is 36, as introduced in main paper.
DSVT-V is a voxel-based variant of our proposed backbone,
which follows the pillar-based framework and splits along
the Z-Axis. The input voxel size is (0.32m, 0.32m, 0.1875m).
Moreover, its backbone also has four stages with block num-
bers {1, 1, 1, 1} and the number of voxels along the Z-Axis
is reduced by our attention-style 3D pooling module with
the stride {4, 4, 2}. The window sizes along the Z-Axis are
{32, 8, 2, 1}, which covers all of the Z-Axis. Different from
DSVT-P, to adapt more voxels, τ is set to 48.

B.1.2 3D Perception on nuScenes

3D object detection and BEV Map Segmentation both uti-
lizes DSVT-P in nuScenes benchmark. We set window size
and set the maximum number of tokens assigned to each set
(τ) to (30, 30, 1) and 90, respectively. The attention modules
in use were equipped with 8 heads, 128 input channels, and
256 hidden channels.

B.2. Ablation Baselines.

B.2.1 ResBackbone1x

ResBackbone1x is built upon sparse convolution (Spconv
2.0) [3], a widely used auto-differentiation library for sparse
tensors. This baseline adopts the same network designs
(i.e., depth, width, and kernel size) as VoxelResBackBone8x
implemented by OpenPCDet [11] except for replacing all

Backbone #param. LEVEL 2 (3D)
mAP mAPH

VoxelBackBone8x† 58M 64.51 61.92
VoxelResBackBone8x† 80M 66.47 64.01

ResBackbone1x 88M 69.61 66.81
DSVT(Pillar, dim128) 71M 71.14 68.59

Table 1. Comparison with sparse convolution. † denotes the results
implemented by OpenPCDet [11]. All models are trained on 20%
Waymo data with 30 epochs.

the downsampling SparseConv blocks with conventional
SubMConv to hold the single stride architecture. The input
voxel size is set to (0.32m, 0.32m, 6m), which is the same
as our DSVT pillar version. For a fair comparison, this
variant only substitutes the DSVT sparse backbone with
ResBackbone1x while other settings remained unchanged,
(e.g., detection head, loss functions, and post-processing).
As shown in Table 1, thanks to the single stride design,
this baseline is very strong, which is +4.89 better than the
original CenterPoint-Voxel(8x) [13] and +2.80 higher than
its residual modification version on L2 mAPH. Even on such
a strong baseline, our DSVT performs +1.78 better, which
demonstrates its powerful modeling ability.

B.2.2 3D Pooling

Linear. As for a specific downsampling sparse region, we
first convert it into dense and flatten it to a vector with fixed
length. Then a one-layer MLP is applied to project it. Finally,
a layer normalization is adopted after MLP module.
Max Pooling. Similar to the linear variant, after being con-
verted into a dense format, the native max-pooling operation
is applied on voxel dimension for processing downsampling.
Attention+Mask. This variant follows the same design as
our attention-style 3D pooling module except for adding key
padding masks of the empty space in the pooling region.

B.3. Training and Inference Schemes.

B.3.1 Waymo

One Stage Detection. As mentioned in the main paper, we
follow the same training schemes as [13] to optimize the
model using Adam [7] optimizer with weight decay 0.05,
one-cycle learning rate policy [5], and max learning rate
3e-3. All the models are trained with batch size 24 for
24 epochs on 8 NVIDIA A100 GPUs. During inference,
following [6, 10], we use class-specific NMS with the IoU
threshold of 0.7, 0.6 and 0.55 for vehicle, pedestrian and
cyclist, respectively. Besides, we also use the ground-truth
copy-paste data augmentation during training and disable
this data augmentation in the last one epoch following [4]
(e.g., using the fade strategy).

DSVT-P DSVT-V Size LEVEL 2 (3D)
mAP mAPH

✓ 24 70.71 68.14
✓ 36 71.14 68.59
✓ 48 70.95 68.43

✓ 36 71.65 69.31
✓ 48 72.01 69.67
✓ 60 71.90 69.60

Table 2. Effect of set size.

Two Stage Detection. The two-stage of our DSVT is built
upon CT3D [9] and trained separately. We fix the 1st-stage
model and finetune the 2nd-stage refinement module for 12
epochs with the same training schedule.

B.3.2 NuScenes

3D Object Detection. We follow the same training scheme
adopted in Transfusion-L [1]. All the models are trained
by AdamW optimizer with weight decay 0.05, one-cycle
learning rate policy, max learning rate 5e-3, and batch size
32 for 20 epochs.We adopt the same fade strategy in [1] in
last 5 epochs.
BEV Map Segmentation. We also adopt the same train-
ing strategy as BEVFusion [8], including training epoch,
learning rate and hyper-parameter of optimizer.

C. Hyper-parameter Analyses

Our DSVT also works well in a wide range of hyper-
parameters, such as the set size and network depth. All the
experiments are trained on 20% Waymo training data with
30 epochs.
Set Size. Table 2 shows the performance of our approach
with different set sizes. With the increase of the set size (from
24 to 36 in DSVT-P, 36 to 48 in DSVT-V), the performance
gradually improves. However, a very large set size will
also slightly decrease the mAP/mAPH. We argue that our
regional local set attention can better encode the part-aware
geometric information, which enhances the performance of
tiny objects. The large set coverage may involve lots of
noise points. Thus, we set the set sizes to 36 and 48 for our
DSVT-P and DSVT-V respectively.
Network Depth. DSVT is relatively shallow by design
thanks to the large receptive fields of the transformer archi-
tecture. As shown in Table 3, we provide the results with
a greater number of DSVT blocks for investigating the in-
fluence of network depth. We observe that the performance
is gradually saturated with the increase of block number. A
deeper network will decrease the running speed. Considering
the trade-off between the computation cost and performance
improvement, we choose 4 blocks as the default setting.

of Blocks LEVEL 2 (3D)
mAP mAPH

2 70.66 68.10
4 71.14 68.59
6 71.12 68.56
8 71.24 68.68

Table 3. Effect of network depth.

D. Qualitative Results
We visualize the qualitative results on Waymo Validation

Set in Figure 1. Thanks to the large receptive field of Trans-
former and fine-grained geometric information provided by
the attention-style 3D pooling module, our DSVT performs
well on the large scenes and can locate 3D objects with
sparse points accurately.

E. Compared to Axial-attention
Our method cannot be considered as an extension of

Axial-attention [12]. DSVT is specifically designed for effi-
ciently processing sparse data in parallel with dynamically
assigned and size-equivalent local sets. The axis-based ro-
tated partitioning is a replaceable strategy for intra-window
fusion (please see Table 6 in the main paper for alternative
strategies). In contrast, axial-attention [2, 12] aims to reduce
the attention computation cost due to the dense data (e.g., 2D
image, or video) and enlarge receptive field by axis-based
factorization.

F. Limitation
Although our method achieves promising performance

and running speed on Waymo Open dataset, there are still
some limitations. DSVT mainly focuses on point cloud
processing for 3D object detection in outdoor autonomous
driving scenarios, where objects (i.e., car, pedestrian and
cyclist) are distributed on a 2D ground plane. It is still an
open problem to design more general-purposed backbones
for the 3D community.

References
[1] Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun

Chen, Hongbo Fu, and Chiew-Lan Tai. Transfusion: Robust
lidar-camera fusion for 3d object detection with transformers.
In CVPR, 2022. 3

[2] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is
space-time attention all you need for video understanding? In
ICML, 2021. 3

[3] Spconv Contributors. Spconv: Spatially sparse convolu-
tion library. https://github.com/traveller59/
spconv, 2022. 2

[4] Lue Fan, Feng Wang, Naiyan Wang, and Zhaoxiang Zhang.
Fully sparse 3d object detection. In NeurIPS, 2022. 2

https://github.com/traveller59/spconv
https://github.com/traveller59/spconv

(a) (b)

(c) (d)
Figure 1. Qualitative visualization on Waymo validation set. Blue boxes and green boxes are ground-truth and predictions, respectively.

[5] Sylvain Gugger. The 1cycle policy. https://sgugger.
github.io/the-1cycle-policy.html, 2018. 2

[6] Yihan Hu, Zhuangzhuang Ding, Runzhou Ge, Wenxin Shao,
Li Huang, Kun Li, and Qiang Liu. Afdetv2: Rethinking the
necessity of the second stage for object detection from point
clouds. NCAI, 2022. 2

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2

[8] Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang,
Huizi Mao, Daniela Rus, and Song Han. Bevfusion: Multi-
task multi-sensor fusion with unified bird’s-eye view repre-
sentation. In ICRA, 2023. 3

[9] Hualian Sheng, Sijia Cai, Yuan Liu, Bing Deng, Jianqiang
Huang, Xian-Sheng Hua, and Min-Jian Zhao. Improving 3d
object detection with channel-wise transformer. In ICCV,
2021. 3

[10] Guangsheng Shi, Ruifeng Li, and Chao Ma. Pillarnet: Real-
time and high-performance pillar-based 3d object detection.
In ECCV, 2022. 2

[11] OpenPCDet Development Team. Openpcdet: An open-source
toolbox for 3d object detection from point clouds. https:
//github.com/open-mmlab/OpenPCDet, 2020. 2

[12] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam,
Alan Yuille, and Liang-Chieh Chen. Axial-deeplab: Stand-
alone axial-attention for panoptic segmentation. In ECCV,
2020. 3

[13] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-
based 3d object detection and tracking. In CVPR, 2021. 2

https://sgugger.github.io/the-1cycle-policy.html
https://sgugger.github.io/the-1cycle-policy.html
https://github.com/open-mmlab/OpenPCDet
https://github.com/open-mmlab/OpenPCDet

	. Proof of Non-overlap Set Partition
	. Implementation Details
	. Network Architecture.
	3D Perception on Waymo
	3D Perception on nuScenes

	. Ablation Baselines.
	ResBackbone1x
	3D Pooling

	. Training and Inference Schemes.
	Waymo
	NuScenes

	. Hyper-parameter Analyses
	. Qualitative Results
	. Compared to Axial-attention
	. Limitation

