
A. DaFKD Without Uploading the Discriminator

The privacy of local generators can be protected by using secure aggregation. The privacy of the global generator can be
protected by only outputting features instead of the original data, as shown in Figure 7, which is elaborated in FEDGEN[40]
and mentioned in Section 3.2.
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Figure 7. Feature generator. The discriminator and the generator learn the feature map instead of the original dataset. Similarly, the
distillation dataset also includes the feature map.

B. DaFKD Without Uploading the Discriminator

In fact, the discriminator and the correlation factors are not necessarily visible to the server to protect the privacy of clients.
More specifically, all clients can use the same generator to produce pseudo distillation data locally. Then, each client k inputs
the distillation data xi to the discriminator θdk to produce correlation factors f(θk,d, xi) and input the distillation data to the
classification model wk to produce soft predictions sk,i. To enable the domain-aware federated distillation, each client k
multiplies the correlation factors f(θk,d, xi) to the corresponding soft predictions s obtaining f(θk,d, xi)sk,i and transmits
it to the server. At the same time, the server aggregates f(θk,d, xi) from all clients in a privacy-preserving manner by
using differential privacy or homomorphic encryption to obtain

∑Kt

k=1 f(θk,d, xi). After receiving multiplied soft predictions
αk,isk,i from all clients and the aggregated

∑Kt

k=1 f(θk,d, xi), the server normalizes the multiplied soft predictions getting
αk,isk,i∑Kt

k=1 f(θk,d,xi)
. To enable distillation, the server uses the same random seed as each client is adopted to produce the pseudo

data xi and inputs it to the global model ŵ obtaining s(ŵ;xi). Finally, the server implements the ensemble distillation using
(8), i.e.,

wt+1 = argminŵt+1
LKD(ŵt+1) =

1

D̂g

∑
xi∈D̂g

KL
( Kt∑
k=1

α̂k,i · s(wk
t ;xi), s(ŵt+1;xi)

)
.

C. Proof of Theorem 1

Theorem 1 Denote the data distribution of each client k by pk(x), the data distribution of all clients by p(x), and the pseudo
data distribution of the generator by pg(x). If the Algorithm 1 trains the discriminator θdk and the global generator θg to the
optima for the loss function (5), then the pseudo data distribution of the generator is p∗g(x) = p(x), and the discriminator

outputs f∗(θdk;x) =
pk(x)

pk(x)+p(x) for each client k = 1 . . .K.
Proof : To analyze the distribution fitted by the global generator and multiple discriminators, we formally present the overall
adversarial loss function including the generator and all discriminators as:

max
θg

min
θd
1 ,··· ,θd

K

Ladv(θ
d
1 , · · · , θdK) = − 1

K

K∑
k=1

[
Ex∼pk(x)log f(θdk;x) + Ez∼pz(z)log (1− f(θdk; g(θ

g; z)))
]
, (13)



where pk(x) is the data distribution of client k. Given the fixed generator θg , considering the distribution of generated data
as pg(x), we have

min
θd
1 ,··· ,θd

K

Ladv(θ
d
1 , · · · , θdK) = − 1

K

K∑
k=1

[
Ex∼pk(x)log f(θdk;x) + Ex∼pg(x)log (1− f(θdk;x))

]
= − 1

K

K∑
k=1

[ ∫
x

pk(x)log f(θdk;x)dx+

∫
x

pg(x)log (1− f(θdk;x))dx
]

= − 1

K

K∑
k=1

[ ∫
x

pk(x)log f(θdk;x) + pg(x)log (1− f(θdk;x))dx
]
.

(14)

Obviously, the equation (16) achieves the minima when

f∗(θdk;x) =
pk(x)

pk(x) + pg(x)
, ∀k = 1, · · · ,K. (15)

Now, to solve the optimal generator, we bring (15) back to (13) and obtain

max
θg

Ladv(θ
g) = − 1

K

K∑
k=1

[
Ex∼pk(x)log

pk(x)

pk(x) + pg(x)
+ Ex∼pg(x)log

pg(x)

pk(x) + pg(x)

]
= − 1

K

K∑
k=1

[ ∫
x

pk(x)log
pk(x)

pk(x) + pg(x)
dx+

∫
x

pg(x)log
pg(x)

pk(x) + pg(x)
dx

]
= − 1

K

K∑
k=1

[ ∫
x

pk(x)log
pk(x)

pk(x) + pg(x)
+ pg(x)log

pg(x)

pk(x) + pg(x)
dx

]
= −

∫
x

1

K

K∑
k=1

[
pk(x)log

pk(x)

pk(x) + pg(x)
+ pg(x)log

pg(x)

pk(x) + pg(x)

]
dx

= log 4− 1

K

K∑
k=1

JSD(pk(x)||pg(x)),

(16)

where JSD denotes the Jensen-Shannon Divergence. Since the centroid defined as the average sum of a finite set of probability
distributions is the minimizer of Jensen-Shannon divergences between a probability distribution and the prescribed set of
distributions, we can derive the formulation of optimal pg(x) as p∗g(x) =

1
K

∑K
k=1 pk(x), which completes the proof.

D. Proof of Theorem 2
Theorem 2 Denote the empirical distribution of activation from each client k by p̂k and the empirical distribution of global
dataset by p̂ = 1

K

∑K
k=1 p̂k. Then, given the constants 0 < δ ≤ 1 and σ > 0, with the probability at least 1− δ, the expected

generalization error Lp(
∑K

k=1 α̂k(x)hp̂k
) of domain-aware ensemble model is:

Lp(

K∑
k=1

α̂k(x)hp̂k
)

≤ (K + 1)Lp̂(hp̂) + (K + 1)

√
σ2log 2K

δ

2m
.

(17)

Proof : We seek to establish the relationship between Lp(
1
K

∑K
k=1 α̂khp̂k

) and Lp̂(hp̂). Considering that the convexity of the
loss function in terms of the prediction, we have

Lp(

K∑
k=1

α̂k(x)hp̂k
) =

∫
x

p(x)L(

K∑
k=1

α̂k(x)hp̂k
(x))dx ≤

∫
x

p(x)
[ K∑
k=1

α̂k(x)L(hp̂k
(x))

]
dx. (18)



Considering the optimal discriminator f∗(θdk;x) =
pk(x)

pk(x)+p(x) where p(x) = 1
K

∑K
k=1 pk(x), we have

α̂k(x) =
f(θdk;x)∑K
k=1 f(θ

d
k;x)

=

pk(x)
pk(x)+p(x)∑K

k=1
pk(x)

pk(x)+p(x)

=
pk(x)

(pk(x) + p(x))
∑K

i=1
pi(x)

pi(x)+p(x)

≤ pk(x)
pk(x)+p(x)

max{p1(x),··· ,pK(x)}+p(x)

∑K
i=1 pi(x)

≤ pk(x)
p(x)

Kp(x)+p(x)

∑K
i=1 pi(x)

= (K + 1)
pk(x)∑K
i=1 pi(x)

=
(K + 1)

K
· pk(x)
p(x)

.

(19)

Bringing the bound of α̂ in (19) back to (18) derives:

Lp(

K∑
k=1

α̂k(x)hp̂k
) ≤

∫
x

p(x)
[ K∑
k=1

(K + 1)

K
· pk(x)
p(x)

L(hp̂k
(x))

]
dx

=
(K + 1)

K

K∑
k=1

∫
x

pk(x)L(hp̂k
(x))dx

=
(K + 1)

K

K∑
k=1

Lpk
(hp̂k

).

(20)

Next, we bound the Lpk
(hp̂k

) with its empirical counterpart Lp̂k
(hp̂k

) through Hoeffding inequality. Without losing the
generality, we consider the simplified case where the size of samples in all clients are equal, i.e., D1 = D2 = . . . = DK = m.
Then, a simple application of the Hoeffding’s inequality gives:

P (|Lpk
(hp̂k

)− Lp̂k
(hp̂k

)| ≥ ϵ) ≤ 2exp(−2mϵ2

σ2
), (21)

where ϵ > 0 and σ > 0 are the constants. Thereby, with probability at least 1− δ
K , we have:

Lpk
(hp̂k

) ≤ Lp̂k
(hp̂k

) +

√
σ2log 2K

δ

2m
. (22)

For all K devices, we have

P

[ K⋂
k=1

(
Lpk

(hp̂k
) ≤Lp̂k

(hp̂k
) +

√
σ2log 2K

δ

2m

)]

= 1− P

[ K⋃
k=1

(
Lpk

(hp̂k
) ≥Lp̂k

(hp̂k
) +

√
σ2log 2K

δ

2m

)]

≥ 1−
K∑

k=1

P

[(
Lpk

(hp̂k
) ≥Lp̂k

(hp̂k
) +

√
σ2log 2K

δ

2m

)]
≥ 1− δ.

(23)



Putting (22) back to (20) derives:

Lp(

K∑
k=1

α̂k(x)hp̂k
) ≤ (K + 1)

K

K∑
k=1

(
Lp̂k

(hp̂k
) +

√
σ2log 2K

δ

2m

)
. (24)

Considering that hp̂k
minimizes the loss function over the distribution p̂k of training dataset Dk, Lp̂k

(hp̂k
) ≤ Lp̂k

(hp̂) can
be easily obtained. According to the definition that p̂ = 1

K

∑K
k=1 p̂k, we can derive

1

K

K∑
k=1

Lp̂k
(hp̂k

) ≤ 1

K

K∑
k=1

Lp̂k
(hp̂) = Lp̂(hp̂). (25)

Thereby, the following inequality holds with probability at least 1− δ:

Lp(

K∑
k=1

α̂k(x)hp̂k
) ≤ (K + 1)

K

K∑
k=1

Lp̂k
(hp̂k

) + (K + 1)

√
σ2log 2K

δ

2m

≤ (K + 1)Lp̂(hp̂) + (K + 1)

√
σ2log 2K

δ

2m
.

(26)


