Supplemental Material: Deep Arbitrary-Scale Image Super-Resolution via
Scale-Equivariance Pursuit

Xiaohang Wang'* Xuanhong Chen'!* Bingbing Ni!" Hang Wang? Zhengyan Tong'
Shanghai Jiao Tong University, Shanghai 200240, China

Yutian Liu’
Huawei

{xygz2014010003,chenl19910528, nibingbing}@sjtu.edu.cn

1. Overview

In this supplemental material, we first introduce our AFE
operator in more detail and compare it with the previous
SOTA method to draw a difference. We then give a more
comprehensive introduction to CKA, the metric we use to
measure feature similarity in the main text. We also per-
form additional experiments to determine the influence of
parameters such as training iterations and the number of
AFE Groups on model performance. Finally, we show more
qualitative and quantitative comparison results to demon-
strate the effectiveness of our method.

2. Adaptive Feature Extractor

In this section, we introduce the design of our Adaptive
Feature Extractor (AFE) module in more detail and explain
the configurations in our experiments. Meanwhile, we also
compare with the previous SOTA scale injection method,
i.e., Scale-Aware Convolution in ArbSR [13], to prove the
excellent performance of our AFE module.

2.1. Algorithm of Adaptive Feature Extractor

The core of AFE is the injection of additional scale infor-
mation, which assists the backbone extract features adap-
tively. A naive idea is to encode the magnification into a
discrete space (e.g., one-hot encoding) and inject it into the
model’s backbone network. However, as in the problem set-
ting of arbitrary-scale image super-resolution (ASISR), the
scale can be any valid real-number (i.e., continuous and in-
finite). This means that these traditional discrete encoding
algorithms cannot be applied to the ASISR problem. To
solve this issue, we try to map the real-valued scale to a
continuous high-dimensional space, and the pseudo-codes
are described in Algorithm 1. Note in Algorithm 1, B is the
input batch size, C' is the number of channels, k£ denote the
kernel size of convolution, d¢m denotes the encoding dims
of sine and cosine, h and w denote the height and width of

*“Equal Contribution.
Corresponding author: Bingbing Ni.

input LR images, respectively. In our experiments, we set
C =180, k = 3, and dim = 40.

Algorithm 1 Forward step of Adaptive Feature Extractor.

Input:
Feature maps from previous stages X;,, € REXCxhxw,
upsampling scale, » € R; linear mapping layer, F; con-
volutional kernel basis, W € RE*XE*Exk. conyolution
bias B € R,

Output:
Feature maps extracted according to scales, X;.

1: Expand the scale r to a higher dimension by sine-
cosine encoding and concatenate the results to obtain
r e Rlx(Zdierl);

2: Obtain the scale vector v <+ F(r') € R1XY;

3: Modulate the scale vector onto the convolution kernel
basis to obtain the final weights W’ < v @ W,

4: Convolve with feature maps from previous stage.
X{n — W/ * Xin;

5: Add the bias to get output X,,,; < X/, + B.

6: return X,,; € REXCxhxw,

2.2. Comparison with Scale-Aware Convolution

To further illustrate the effectiveness of our AFE opera-
tor, we compare it with the previous SOTA scale injection
method, Scale-Aware Convolution [13]. From the perspec-
tive of neural networks, both AFE and Scale-Aware Con-
volution can be regarded as dynamic convolutions. They
dynamically adjust the weight of the convolution kernels
by modulating a scale vector to inject the scale information
into the feature extraction process explicitly, achieving the
purpose of adaptive feature extraction. However, as shown
in Figure 1, the implementation of these two methods has
three significant differences.

First, the overall structure is different. Given a fea-
ture map X, Scale-Aware Convolution first feeds it into
an hourglass module with four convolutions and a sigmoid
layer to generate a guidance map M with values ranging

| Feature
Maps

Japuedx3
Adusnbal4

Scale Vector Kernels

Adaptive Feature Extractor

Figure 1. Comparison of AFE and Scale-Aware Convolution [
method.

from O to 1. This mask is then used to filter features ex-
tracted from the scale-aware branch, probably because the
scale-aware branch will introduce some unnecessary infor-
mation that needs to be filtered out. While in our design,
the AFE operator abandons the branch of filtering feature
maps through guidance maps and instead focuses on affect-
ing the convolution kernel itself to enhance the equivariance
of the feature extraction process. Second, the scale informa-
tion affects convolution differently. In Scale-Aware Con-
volution, the authors pre-define a series of experts, which
are actually several sets of weights, as the basic kernels.
These experts will be linearly combined according to cer-
tain weights as the final convolution kernel, and the scale
is used to predict their weights. Although this method can
also achieve dynamic convolution, the weight of scale pre-
diction acts on the entire expert (i.e., the kernel of one chan-
nel cannot be changed alone), which seriously limits the
dynamic ability of the last convolution kernel. While in
AFE, we only use one set of kernel basis, and the weights
predicted by scale will be applied to each channel of the
kernel. This dramatically increases the flexibility of weight
combinations. Third, the complexity of AFE is significantly
lower. Since Scale-Aware Convolution needs to define mul-
tiple experts, its parameter quantity is much higher than our
method. When the number of experts is 4, even without
considering the branch of predicting mask, the parameter
amount of AFE is only about 25% of Scale-Aware Convo-
lution.

3. Metric of Feature Similarity

As described in the main text, we use Centered Kernel
Alignment (CKA) [6, | 1] as a feature similarity measure. In
this section, we introduce CKA in more detail.

Centered Kernel Alignment. Centered Kernel Align-
ment (CKA) is a representation similarity metric widely
used to understand the representations learned by neural
networks. In this paper, we use the Gram matrices to calcu-

Conv 3x3

Experts

1.2 = |
o c Scale-Aware
B < =F Convolution !

] in structure. AFE is much simpler and more flexible than the previous

late CKA. Specifically, take X € R"*P1 and Y € R™*P2
as the two feature maps to be compared, we first compute
the Gram matrices K and T as follows:

K=XX"L=YY". (1)

Then we compute their normalized similarity in terms of the
Hilbert-Schmidt Independence Criterion (HSIC) [3] as

K = HKH,L' = HLH,)

HSIC(K,L) = vec(K') - vec(L/)/(m — 1)%, (3)

where H is a centering matrix, and vec(-) denotes a vector-
ized function. At last, CKA can be calulated as

B HSIC(K,L)
- VHSIC(K,K)HSICy(L,L)’

“)

CKA(K,L)

which is a real number in [0, 1], and the higher its value, the
greater the similarity.

However, the above formula is not scalable against deep
architectures and large datasets. Therefore, we follow the
work of [11], in which the authors propose a minibatch
version that can be constructed by an unbiased estimator of
the HSIC as:

CKAminibatch (K, L) =
IS = HSIO XX, YY)

\/ SETHSIC(XGXE, X X)) T HSIO (Y YT, YY)
(%)

Experiment Details. In our experiments, we choose
batchsize=4 and compute the CKA similarity between mod-
els for different scales on the Urbanl100 dataset. For
ArbSR [13], we compare the feature maps from each Res-
Block; for HAT [1] and our EQNet, we compare the feature
generated by each attention layer.

Table 1. Quantitative comparison (PSNR) for different number of
AFE Groups and WSA Blocks per group. The best and second-
best results are marked in red and blue colors, respectively. We
choose Model IV as the final model to report in the main text.

num of | WSAs per Urban100 [5]
Groups | Group x2 x4 x*6
I 4 4 8.5M |33.35 26.92 24.24

paras

II 4 5 9.6M |33.41 27.17 24.50
I 5 5 11.6M | 33.52 27.22 24.57
v 6 5 13.6M | 33.62 27.30 24.66
v 6 6 15.2M | 33.64 27.31 24.63

Table 2. Quantitative comparison (PSNR) for different training
stages of our EQNet. The best and second-best results are marked
in red and blue colors, respectively. Note that we enable the pre-
training strategy for this comparison.

Iterations Urban100 [5]
ImageNet | DF2K x2 x4 x*6
I 200k 0 33.00 26.92 24.36
I 400k 0 33.29 27.28 24.67
III 600k 0 33.41 2747 24.82
v 800k 0 33.45 27.52 24.89

v 800k 200k | 33.83 27.54 24.83

4. Additional Experiments

In this section, we conduct additional experiments to il-
lustrate the role of different hyperparameters in the model.

4.1. The Number of Groups and Blocks

Generally speaking, a larger model usually has a larger
capacity and more vital learning ability. However, such a
model also commonly suffers from problems such as be-
ing difficult to train and prone to overfitting due to a large
number of parameters. Therefore, it is important to make
a trade-off on model size. To this end, in this subsection,
we change the number of AFE Groups and the number
of window-based self-attention (WSA) blocks per group in
our backbone and test their performance on the Urban100
dataset. The results at scales x2/4/6 are shown in Table 1.
Note that we DO NOT adopt the pre-training strategy in
these experiments.

From Table 1, we observe that from Model I to Model
IV, as the model size becomes larger, the performance both
in training distribution and out of the distribution continues
to improve. However, comparing Model IV and Model V,
it can be observed that the benefit of increasing the param-
eters is not as evident as before. The performance is even
degraded in the case of x6. This means that Model V is
likely to be overfitting. Therefore, we choose Model IV as
the final model in the main text.

4.2. Training Iterations

We also explore the performance of EQNet at different
stages of the training process, and the results in PSNR are
shown in Table 2. Note that we use the pre-training strat-
egy for this comparison. We first train EQNet on ImageNet
dataset [7] for 800k iterations, and then train on DF2K
dataset [12] for the rest 200k iterations.

From Table 2, it can be observed that with the increase
of training iterations, our model’s performance continues
to improve. We also observe that cases out of the train-
ing distribution converge faster than those inside the dis-
tribution. This means that from the middle of the training
process (about 600k iterations), EQNet already has a basic
certainty of equivariance and generalization. On the other
hand, at scale x2, there is a significant gap (0.38dB) be-
tween Model IV and Model V, while at x4 and x6, the
gaps are much smaller, indicating that the DF2K dataset is
more beneficial for training at lower scales. As a matter of
fact, arbitrary-scale image super-resolution can be viewed
as a muti-task problem, which is much more complicated
than normal super-resolution. Therefore, training the net-
work for a long time is essential to fully exploit the model’s
potential.

4.3. More Comparisons

In this subsection, we conduct more qualitative and
quantitative comparisons of our EQNet with previous SOTA
methods.

Quantitative Comparison. To further test the
performance of our method, we continue to compare
our EQNet model with other state-of-the-art arbitrary-
scale SR methods: MetaSR [4], ArbSR [13], LIIF [2]
and LTE [8]. In addition to the average Peak Signal
to Noise Ratio (PSNR), we also report these models’
Structural Similarity (SSIM). The quantitative results for
x2.25/2.75/3.25/3.75/4.25/4.75/5.25 SR are shown in
Table 3. Note that all comparison ASISR models are based
on one single model protocol. It can be observed that our
method achieves the best results under most configurations
in terms of both PSNR and SSIM, especially at out-of-
distribution scales x4.25/4.75/5.25.

Qualitative Comparison. We also conduct more quali-
tative comparisons of different methods with different scale
factors. Figure 2 shows the results on Urban100 dataset [5].
It can be observed that EQNet is far superior to other meth-
ods in processing complex textures, which further illustrates
our method’s ability to restore high-frequency information.
Figure 3 displays the results on BSD100 dataset [9]. The re-
sults show that our method also has significant advantages
in reconstructing details when processing natural images
(for example, the edge contour of the window in the first
row). Figure 4 shows the results on Mangal09 dataset [10].
From the comparison, we observe that our model is able to

restore more clear edges for printed texts at different scales,
such as the letters E, A, P, R, and so on. These compar-
isons further demonstrate the effectiveness of our equivari-
ant model.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

Xiangyu Chen, Xintao Wang, Jiantao Zhou, and Chao
Dong. Activating more pixels in image super-resolution
transformer. arXiv preprint arXiv:2205.04437,2022. 2
Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning
continuous image representation with local implicit image
function. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 8628-8638,
2021. 3,5

Arthur Gretton, Kenji Fukumizu, Choon Teo, Le Song, Bern-
hard Scholkopf, and Alex Smola. A kernel statistical test of
independence. Advances in neural information processing
systems, 20, 2007. 2

Xuecai Hu, Haoyuan Mu, Xiangyu Zhang, Zilei Wang,
Tieniu Tan, and Jian Sun. Meta-sr: A magnification-
arbitrary network for super-resolution. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 1575-1584, 2019. 3, 5

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single
image super-resolution from transformed self-exemplars. In
CVPR, pages 5197-5206, 2015. 3, 6

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do
better imagenet models transfer better? In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 2661-2671, 2019. 2

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25:1097-1105, 2012. 3

Jaewon Lee and Kyong Hwan Jin. Local texture estima-
tor for implicit representation function. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1929-1938, 2022. 3, 5

David Martin, Charless Fowlkes, Doron Tal, and Jitendra
Malik. A database of human segmented natural images and
its application to evaluating segmentation algorithms and
measuring ecological statistics. In ICCV, volume 2, pages
416-423. IEEE, 2001. 3, 6

Yusuke Matsui, Kota Ito, Yuji Aramaki, Azuma Fujimoto,
Toru Ogawa, Toshihiko Yamasaki, and Kiyoharu Aizawa.
Sketch-based manga retrieval using mangal09 dataset. Mul-
timedia Tools and Applications, 76(20):21811-21838, 2017.
3,7

Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do
wide and deep networks learn the same things? uncover-
ing how neural network representations vary with width and
depth. arXiv preprint arXiv:2010.15327, 2020. 2

Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-
Hsuan Yang, and Lei Zhang. Ntire 2017 challenge on sin-
gle image super-resolution: Methods and results. In CVPR
workshops, pages 114-125,2017. 3

[13] Longguang Wang, Yingqian Wang, Zaiping Lin, Jungang

Yang, Wei An, and Yulan Guo. Learning a single net-
work for scale-arbitrary super-resolution. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 48014810, 2021. 1,2,3,5

Table 3. Quantitative comparison (in average PSNR and SSIM) for arbitrary-scale SR with state-of-the-art methods on benchmark
datasets. The best and second-best results are marked in red and blue colors, respectively. “t” indicates that methods adopt pre-training
strategy on ImageNet.

Method Scale Set5 Setl4 BSD100 Urban100 Mangal09
PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM
Bicubic 3299 09192 | 29.66 0.8494 | 2885 0.8190 | 26.21 0.8152 | 29.81 09177
MetaSR [4] 37.01 09513 | 32.80 0.9002 | 31.20 0.8753 | 31.71 09211 | 37.75 0.9674
ArbSR [13] 37.02 0.9537 | 32.84 09017 | 31.24 0.8767 | 31.71 09196 | 37.84 09710
LIIF [2] x2.25 37.05 0.9528 | 32.84 0.9023 | 31.27 0.8761 | 31.54 09178 | 37.72 0.9709
LTE [8] 3720 0.9539 | 33.12 0.9235 | 31.42 0.8796 | 32.08 0.9211 | 38.11 0.9707
 Ours | | 27.18 09530 | 3325 09253 | 31.37 0.8779 | 3220 09245 | 28.14 09714
Ourst 37.22 09541 | 3332 09286 | 31.43 0.8792 | 32.57 0.9286 | 38.19 0.9726
Bicubic 31.06 0.8864 | 2829 0.8002 | 27.71 0.7728 | 2498 0.7610 | 27.64 0.8774
MetaSR [4] 3536 0.9380 | 31.19 0.8627 | 29.86 0.8345 | 29.73 0.8849 | 3546 0.9543
ArbSR [13] 3539 09374 | 31.23 0.8638 | 2991 0.8385 | 29.71 0.8856 | 35.51 0.9567
LIIF [2] x2.75 3538 0.9372 | 31.11 0.8638 | 29.83 0.8306 | 29.57 0.8829 | 3527 0.9562
LTE [8] 3551 09385 | 31.44 0.8690 | 29.89 0.8331 | 29.84 0.8895 | 35.85 0.9586
~ Ours | | 3552 09381 | 3147 0.8682 | 29.91 0.8335 [30.12 08916 | 3577 09570
Oursf 3555 09389 | 31.60 0.8689 | 2996 0.8343 | 30.58 0.8977 | 35.86 0.9593
Bicubic 29.21 0.8528 | 27.17 0.7569 | 2697 0.7339 | 24.09 0.7142 | 26.40 0.8375
MetaSR [4] 3398 09177 | 29.73 0.8283 | 28.99 0.8042 | 28.19 0.8505 | 33.49 0.9398
ArbSR [13] 34.03 0.9226 | 29.87 0.8290 | 29.00 0.8038 | 28.22 0.8518 | 33.55 0.9410
LIIF [2] x3.25 3412 0.9221 | 30.00 0.8302 | 28.83 0.7914 | 28.19 0.8500 | 33.35 0.9406
LTE [8] 3442 09239 | 30.26 0.8324 | 28.87 0.7946 | 28.73 0.8598 | 33.76 0.9423
S Ours || 3437 © 0.9235 | 3030 0.8339 | 2891 0.7952 | 2885 0.8628 | 33.89 0.9425
Oursf 3444 09247 | 3043 0.8365 | 28.97 0.7960 | 29.12 0.8683 | 34.16 0.9457
Bicubic 28.98 0.8331 | 26.37 0.7224 | 2620 0.6885 | 2330 0.6756 | 25.41 0.8043
MetaSR [4] 33.15 09139 | 29.05 0.8025 | 2798 0.7583 | 27.07 0.8180 | 31.90 0.9222
ArbSR [13] 3312 09126 | 29.01 0.8011 | 28.01 0.7605 | 27.09 0.8192 | 31.93 0.9247
LIIF [2] x3.75 33.04 09073 | 29.14 0.8004 | 28.07 0.7575 | 27.13 0.8190 | 31.83 0.9251
LTE [8] 33.10 0.9083 | 29.22 0.8039 | 28.10 0.7606 | 27.65 0.8324 | 32.41 0.9303
S Ours || 3313 © 0.9092 | 2927 ~ 0.8045 | 28.16 0.7613 | 27.69 0.8337 | 33.51 0.9298
Ourst 3330 09110 | 29.52 0.8071 | 2821 0.7627 | 28.01 0.8402 | 32.70 0.9323
Bicubic 28.08 0.7983 | 24.17 0.6945 | 25779 0.6697 | 2295 0.6442 | 24.49 0.7698
MetaSR [4] 3175 0.8890 | 28.47 0.7765 | 27.53 0.7427 | 26.13 0.7872 | 30.29 0.9035
ArbSR [13] 3176 0.8887 | 28.46 0.7759 | 27.52 0.7420 | 26.10 0.7864 | 30.31 0.9044
LIIF [2] x*4.25 | 32.05 0.8917 | 2850 0.7748 | 27.46 0.7286 | 2625 0.7896 | 30.52 0.9094
LTE [8] 3243 0.8952 | 2855 0.7774 | 2746 0.7314 | 26.67 0.8044 | 30.66 009112
S Ours || 3230 © 0.8932 | 28.72 0.7795 | 2743~ 0.7317 | 26.79 ~ 0.8068 | 30.87 0.9135
Ourst 3242 0.8966 | 28.78 0.7807 | 27.61 0.7341 | 27.11 0.8134 | 31.41 0.9183
Bicubic 27.37 07717 | 2387 0.6627 | 2425 0.6401 | 22.47 0.6133 | 23.85 0.7435
MetaSR [4] 3062 0.8716 | 27.71 0.7439 | 2692 0.7091 | 2536 0.7549 | 29.06 0.8861
ArbSR [13] 30.59 0.8704 | 27.67 0.7436 | 26.89 0.7085 | 25.21 0.7512 | 28.88 0.8820
LIIF [2] x*4.75 | 31.15 0.8762 | 27.88 0.7522 | 2696 0.7044 | 2555 0.7626 | 29.47 0.8938
LTE [8] 31.40 0.8802 | 27.87 0.7511 | 2698 0.7078 | 25.80 0.7761 | 29.79 0.8977
S Ours || 31.46 ~ 0.8794 | 28.01 0.7553 | 27.03 ~ 0.7085 | 2592 0.7794 | 29.95 0.9003 -
Ourst 31.67 0.8831 | 28.12 0.7580 | 27.10 0.7099 | 26.36 0.7879 | 30.35 0.9045
Bicubic 2691 0.7579 | 2323 0.6437 | 2390 0.6096 | 22.09 0.5885 | 21.83 0.7201
MetaSR [4] 29.95 0.8583 | 27.10 0.7285 | 26.27 0.6761 | 2473 0.7303 | 28.19 0.8654
ArbSR [13] 2986 0.8558 | 26.89 0.7262 | 2622 0.6742 | 2447 0.7190 | 27.59 0.8570
LIIF [2] x*5.25 | 30.38 0.8611 | 2738 0.7310 | 26.52 0.6824 | 2495 0.7374 | 28.54 0.8779
LTE [8] 30.51 0.8652 | 27.46 0.7353 | 26.56 0.6862 | 25.19 0.7514 | 28.96 0.8803
© Ours | [3056 0.8660 | 27.49 ~ 0.7366 | 26.57 0.6866 | 2532 0.7546 | 29.14 0.8845
Ourst 30.87 0.8687 | 27.63 0.7379 | 26.67 0.6884 | 25.70 0.7634 | 29.36 0.8895

Urban100 008 x2.75

W' 'l@/ — . e ———

< 7

x | A — ____—

. | ee—

b= ﬂ’ | e ———
= _

OI | m——— e ———.

s e

S e

c //

© ——

g

n

N

(o]

3

X

[92)

n

o|

o

o

—

c

©

g

po]

Original Image ArbSR LIIF LTE Ours GT

Figure 2. Visual comparison for arbitrary-scale SR models on Urban100 dataset [5]. In the first row, our method can restore a more realistic
shape of the hole. In the second row, our method reconstructs dense textures accurately, while other methods produce blurred results. The
third row shows that our model can keep the original contour of the object as much as possible when the scale is large. This further
illustrates that our method’s ability to restore high-frequency information.

BSD100_102061 x1.75

BSD100_219090 x3

BSD100_253027 x*8

Original Image ArbSR LIIF Ours

Figure 3. Visual comparison for arbitrary-scale SR models on BSD100 [9] dataset. The results show that our method also has significant
advantages in reconstructing details when processing natural images (for example, the edge contour of the window in the first row and
second row).

i
I

SUPER ——4oup)d b

MangalOQ_HeaIingPI;net x3.25

ArbSR

LTE

LIIF Ours

: . GT
Mangal09_PrayerHaNemurenai x4

Figure 4. Visual comparison for arbitrary-scale SR models on Mangal09 [10] dataset. It can be observed that our model is able to restore
more clear edges for printed texts at different scales, such as the letters E, A, P, R, and so on.

	. Overview
	. Adaptive Feature Extractor
	. Algorithm of Adaptive Feature Extractor
	. Comparison with Scale-Aware Convolution

	. Metric of Feature Similarity
	. Additional Experiments
	. The Number of Groups and Blocks
	. Training Iterations
	. More Comparisons

