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1. Overview

In this supplemental material, we first introduce our AFE
operator in more detail and compare it with the previous
SOTA method to draw a difference. We then give a more
comprehensive introduction to CKA, the metric we use to
measure feature similarity in the main text. We also per-
form additional experiments to determine the influence of
parameters such as training iterations and the number of
AFE Groups on model performance. Finally, we show more
qualitative and quantitative comparison results to demon-
strate the effectiveness of our method.

2. Adaptive Feature Extractor

In this section, we introduce the design of our Adaptive
Feature Extractor (AFE) module in more detail and explain
the configurations in our experiments. Meanwhile, we also
compare with the previous SOTA scale injection method,
i.e., Scale-Aware Convolution in ArbSR [13], to prove the
excellent performance of our AFE module.

2.1. Algorithm of Adaptive Feature Extractor

The core of AFE is the injection of additional scale infor-
mation, which assists the backbone extract features adap-
tively. A naive idea is to encode the magnification into a
discrete space (e.g., one-hot encoding) and inject it into the
model’s backbone network. However, as in the problem set-
ting of arbitrary-scale image super-resolution (ASISR), the
scale can be any valid real-number (i.e., continuous and in-
finite). This means that these traditional discrete encoding
algorithms cannot be applied to the ASISR problem. To
solve this issue, we try to map the real-valued scale to a
continuous high-dimensional space, and the pseudo-codes
are described in Algorithm 1. Note in Algorithm 1, B is the
input batch size, C is the number of channels, k denote the
kernel size of convolution, dim denotes the encoding dims
of sine and cosine, h and w denote the height and width of
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input LR images, respectively. In our experiments, we set
C = 180, k = 3, and dim = 40.

Algorithm 1 Forward step of Adaptive Feature Extractor.

Input:
Feature maps from previous stages Xin ∈ RB×C×h×w;
upsampling scale, r ∈ R; linear mapping layer, F ; con-
volutional kernel basis,W ∈ RC×C×k×k; convolution
bias B ∈ RC .

Output:
Feature maps extracted according to scales, Xout.

1: Expand the scale r to a higher dimension by sine-
cosine encoding and concatenate the results to obtain
r′ ∈ R1×(2dim+1);

2: Obtain the scale vector v ← F(r′) ∈ R1×C ;
3: Modulate the scale vector onto the convolution kernel

basis to obtain the final weightsW ′ ← v ⊗W;
4: Convolve with feature maps from previous stage.

X ′
in ←W ′ ∗Xin;

5: Add the bias to get output Xout ← X ′
in + B.

6: return Xout ∈ RB×C×h×w;

2.2. Comparison with Scale-Aware Convolution

To further illustrate the effectiveness of our AFE opera-
tor, we compare it with the previous SOTA scale injection
method, Scale-Aware Convolution [13]. From the perspec-
tive of neural networks, both AFE and Scale-Aware Con-
volution can be regarded as dynamic convolutions. They
dynamically adjust the weight of the convolution kernels
by modulating a scale vector to inject the scale information
into the feature extraction process explicitly, achieving the
purpose of adaptive feature extraction. However, as shown
in Figure 1, the implementation of these two methods has
three significant differences.

First, the overall structure is different. Given a fea-
ture map Xin, Scale-Aware Convolution first feeds it into
an hourglass module with four convolutions and a sigmoid
layer to generate a guidance map M with values ranging
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Figure 1. Comparison of AFE and Scale-Aware Convolution [13] in structure. AFE is much simpler and more flexible than the previous
method.

from 0 to 1. This mask is then used to filter features ex-
tracted from the scale-aware branch, probably because the
scale-aware branch will introduce some unnecessary infor-
mation that needs to be filtered out. While in our design,
the AFE operator abandons the branch of filtering feature
maps through guidance maps and instead focuses on affect-
ing the convolution kernel itself to enhance the equivariance
of the feature extraction process. Second, the scale informa-
tion affects convolution differently. In Scale-Aware Con-
volution, the authors pre-define a series of experts, which
are actually several sets of weights, as the basic kernels.
These experts will be linearly combined according to cer-
tain weights as the final convolution kernel, and the scale
is used to predict their weights. Although this method can
also achieve dynamic convolution, the weight of scale pre-
diction acts on the entire expert (i.e., the kernel of one chan-
nel cannot be changed alone), which seriously limits the
dynamic ability of the last convolution kernel. While in
AFE, we only use one set of kernel basis, and the weights
predicted by scale will be applied to each channel of the
kernel. This dramatically increases the flexibility of weight
combinations. Third, the complexity of AFE is significantly
lower. Since Scale-Aware Convolution needs to define mul-
tiple experts, its parameter quantity is much higher than our
method. When the number of experts is 4, even without
considering the branch of predicting mask, the parameter
amount of AFE is only about 25% of Scale-Aware Convo-
lution.

3. Metric of Feature Similarity
As described in the main text, we use Centered Kernel

Alignment (CKA) [6,11] as a feature similarity measure. In
this section, we introduce CKA in more detail.

Centered Kernel Alignment. Centered Kernel Align-
ment (CKA) is a representation similarity metric widely
used to understand the representations learned by neural
networks. In this paper, we use the Gram matrices to calcu-

late CKA. Specifically, take X ∈ Rm×p1 and Y ∈ Rm×p2

as the two feature maps to be compared, we first compute
the Gram matrices K and T as follows:

K = XXT ,L = YYT . (1)

Then we compute their normalized similarity in terms of the
Hilbert-Schmidt Independence Criterion (HSIC) [3] as

K′ = HKH,L′ = HLH, (2)

HSIC(K,L) = vec(K′) · vec(L′)/(m− 1)2, (3)

where H is a centering matrix, and vec(·) denotes a vector-
ized function. At last, CKA can be calulated as

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC0(L,L)
, (4)

which is a real number in [0, 1], and the higher its value, the
greater the similarity.

However, the above formula is not scalable against deep
architectures and large datasets. Therefore, we follow the
work of [11], in which the authors propose a minibatch
version that can be constructed by an unbiased estimator of
the HSIC as:

CKAminibatch(K,L) =

1
k

∑i=1
k HSIC(XiX

T
i ,YiY

T
i )√∑i=1

k HSIC(XiXT
i ,XiXT

i )
∑i=1

k HSIC(YiYT
i ,YiYT

i ))
.

(5)

Experiment Details. In our experiments, we choose
batchsize=4 and compute the CKA similarity between mod-
els for different scales on the Urban100 dataset. For
ArbSR [13], we compare the feature maps from each Res-
Block; for HAT [1] and our EQNet, we compare the feature
generated by each attention layer.



Table 1. Quantitative comparison (PSNR) for different number of
AFE Groups and WSA Blocks per group. The best and second-
best results are marked in red and blue colors, respectively. We
choose Model IV as the final model to report in the main text.

num of WSAs per paras Urban100 [5]
Groups Group ×2 ×4 ×*6

I 4 4 8.5M 33.35 26.92 24.24
II 4 5 9.6M 33.41 27.17 24.50
III 5 5 11.6M 33.52 27.22 24.57
IV 6 5 13.6M 33.62 27.30 24.66
V 6 6 15.2M 33.64 27.31 24.63

Table 2. Quantitative comparison (PSNR) for different training
stages of our EQNet. The best and second-best results are marked
in red and blue colors, respectively. Note that we enable the pre-
training strategy for this comparison.

Iterations Urban100 [5]
ImageNet DF2K ×2 ×4 ×*6

I 200k 0 33.00 26.92 24.36
II 400k 0 33.29 27.28 24.67
III 600k 0 33.41 27.47 24.82
IV 800k 0 33.45 27.52 24.89
V 800k 200k 33.83 27.54 24.83

4. Additional Experiments

In this section, we conduct additional experiments to il-
lustrate the role of different hyperparameters in the model.

4.1. The Number of Groups and Blocks

Generally speaking, a larger model usually has a larger
capacity and more vital learning ability. However, such a
model also commonly suffers from problems such as be-
ing difficult to train and prone to overfitting due to a large
number of parameters. Therefore, it is important to make
a trade-off on model size. To this end, in this subsection,
we change the number of AFE Groups and the number
of window-based self-attention (WSA) blocks per group in
our backbone and test their performance on the Urban100
dataset. The results at scales ×2/4/6 are shown in Table 1.
Note that we DO NOT adopt the pre-training strategy in
these experiments.

From Table 1, we observe that from Model I to Model
IV, as the model size becomes larger, the performance both
in training distribution and out of the distribution continues
to improve. However, comparing Model IV and Model V,
it can be observed that the benefit of increasing the param-
eters is not as evident as before. The performance is even
degraded in the case of ×6. This means that Model V is
likely to be overfitting. Therefore, we choose Model IV as
the final model in the main text.

4.2. Training Iterations

We also explore the performance of EQNet at different
stages of the training process, and the results in PSNR are
shown in Table 2. Note that we use the pre-training strat-
egy for this comparison. We first train EQNet on ImageNet
dataset [7] for 800k iterations, and then train on DF2K
dataset [12] for the rest 200k iterations.

From Table 2, it can be observed that with the increase
of training iterations, our model’s performance continues
to improve. We also observe that cases out of the train-
ing distribution converge faster than those inside the dis-
tribution. This means that from the middle of the training
process (about 600k iterations), EQNet already has a basic
certainty of equivariance and generalization. On the other
hand, at scale ×2, there is a significant gap (0.38dB) be-
tween Model IV and Model V, while at ×4 and ×6, the
gaps are much smaller, indicating that the DF2K dataset is
more beneficial for training at lower scales. As a matter of
fact, arbitrary-scale image super-resolution can be viewed
as a muti-task problem, which is much more complicated
than normal super-resolution. Therefore, training the net-
work for a long time is essential to fully exploit the model’s
potential.

4.3. More Comparisons

In this subsection, we conduct more qualitative and
quantitative comparisons of our EQNet with previous SOTA
methods.

Quantitative Comparison. To further test the
performance of our method, we continue to compare
our EQNet model with other state-of-the-art arbitrary-
scale SR methods: MetaSR [4], ArbSR [13], LIIF [2]
and LTE [8]. In addition to the average Peak Signal
to Noise Ratio (PSNR), we also report these models’
Structural Similarity (SSIM). The quantitative results for
×2.25/2.75/3.25/3.75/4.25/4.75/5.25 SR are shown in
Table 3. Note that all comparison ASISR models are based
on one single model protocol. It can be observed that our
method achieves the best results under most configurations
in terms of both PSNR and SSIM, especially at out-of-
distribution scales ×4.25/4.75/5.25.

Qualitative Comparison. We also conduct more quali-
tative comparisons of different methods with different scale
factors. Figure 2 shows the results on Urban100 dataset [5].
It can be observed that EQNet is far superior to other meth-
ods in processing complex textures, which further illustrates
our method’s ability to restore high-frequency information.
Figure 3 displays the results on BSD100 dataset [9]. The re-
sults show that our method also has significant advantages
in reconstructing details when processing natural images
(for example, the edge contour of the window in the first
row). Figure 4 shows the results on Manga109 dataset [10].
From the comparison, we observe that our model is able to



restore more clear edges for printed texts at different scales,
such as the letters E, A, P, R, and so on. These compar-
isons further demonstrate the effectiveness of our equivari-
ant model.
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Table 3. Quantitative comparison (in average PSNR and SSIM) for arbitrary-scale SR with state-of-the-art methods on benchmark
datasets. The best and second-best results are marked in red and blue colors, respectively. “†” indicates that methods adopt pre-training
strategy on ImageNet.

Method Scale Set5 Set14 BSD100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic

×2.25

32.99 0.9192 29.66 0.8494 28.85 0.8190 26.21 0.8152 29.81 0.9177
MetaSR [4] 37.01 0.9513 32.80 0.9002 31.20 0.8753 31.71 0.9211 37.75 0.9674
ArbSR [13] 37.02 0.9537 32.84 0.9017 31.24 0.8767 31.71 0.9196 37.84 0.9710

LIIF [2] 37.05 0.9528 32.84 0.9023 31.27 0.8761 31.54 0.9178 37.72 0.9709
LTE [8] 37.20 0.9539 33.12 0.9235 31.42 0.8796 32.08 0.9211 38.11 0.9707
Ours 27.18 0.9530 33.25 0.9253 31.37 0.8779 32.20 0.9245 28.14 0.9714

Ours† 37.22 0.9541 33.32 0.9286 31.43 0.8792 32.57 0.9286 38.19 0.9726
Bicubic

×2.75

31.06 0.8864 28.29 0.8002 27.71 0.7728 24.98 0.7610 27.64 0.8774
MetaSR [4] 35.36 0.9380 31.19 0.8627 29.86 0.8345 29.73 0.8849 35.46 0.9543
ArbSR [13] 35.39 0.9374 31.23 0.8638 29.91 0.8385 29.71 0.8856 35.51 0.9567

LIIF [2] 35.38 0.9372 31.11 0.8638 29.83 0.8306 29.57 0.8829 35.27 0.9562
LTE [8] 35.51 0.9385 31.44 0.8690 29.89 0.8331 29.84 0.8895 35.85 0.9586
Ours 35.52 0.9381 31.47 0.8682 29.91 0.8335 30.12 0.8916 35.77 0.9570

Ours† 35.55 0.9389 31.60 0.8689 29.96 0.8343 30.58 0.8977 35.86 0.9593
Bicubic

×3.25

29.21 0.8528 27.17 0.7569 26.97 0.7339 24.09 0.7142 26.40 0.8375
MetaSR [4] 33.98 0.9177 29.73 0.8283 28.99 0.8042 28.19 0.8505 33.49 0.9398
ArbSR [13] 34.03 0.9226 29.87 0.8290 29.00 0.8038 28.22 0.8518 33.55 0.9410

LIIF [2] 34.12 0.9221 30.00 0.8302 28.83 0.7914 28.19 0.8500 33.35 0.9406
LTE [8] 34.42 0.9239 30.26 0.8324 28.87 0.7946 28.73 0.8598 33.76 0.9423
Ours 34.37 0.9235 30.30 0.8339 28.91 0.7952 28.85 0.8628 33.89 0.9425

Ours† 34.44 0.9247 30.43 0.8365 28.97 0.7960 29.12 0.8683 34.16 0.9457
Bicubic

×3.75

28.98 0.8331 26.37 0.7224 26.20 0.6885 23.30 0.6756 25.41 0.8043
MetaSR [4] 33.15 0.9139 29.05 0.8025 27.98 0.7583 27.07 0.8180 31.90 0.9222
ArbSR [13] 33.12 0.9126 29.01 0.8011 28.01 0.7605 27.09 0.8192 31.93 0.9247

LIIF [2] 33.04 0.9073 29.14 0.8004 28.07 0.7575 27.13 0.8190 31.83 0.9251
LTE [8] 33.10 0.9083 29.22 0.8039 28.10 0.7606 27.65 0.8324 32.41 0.9303
Ours 33.13 0.9092 29.27 0.8045 28.16 0.7613 27.69 0.8337 33.51 0.9298

Ours† 33.30 0.9110 29.52 0.8071 28.21 0.7627 28.01 0.8402 32.70 0.9323
Bicubic

×*4.25

28.08 0.7983 24.17 0.6945 25.79 0.6697 22.95 0.6442 24.49 0.7698
MetaSR [4] 31.75 0.8890 28.47 0.7765 27.53 0.7427 26.13 0.7872 30.29 0.9035
ArbSR [13] 31.76 0.8887 28.46 0.7759 27.52 0.7420 26.10 0.7864 30.31 0.9044

LIIF [2] 32.05 0.8917 28.50 0.7748 27.46 0.7286 26.25 0.7896 30.52 0.9094
LTE [8] 32.43 0.8952 28.55 0.7774 27.46 0.7314 26.67 0.8044 30.66 0.9112
Ours 32.30 0.8932 28.72 0.7795 27.43 0.7317 26.79 0.8068 30.87 0.9135

Ours† 32.42 0.8966 28.78 0.7807 27.61 0.7341 27.11 0.8134 31.41 0.9183
Bicubic

×*4.75

27.37 0.7717 23.87 0.6627 24.25 0.6401 22.47 0.6133 23.85 0.7435
MetaSR [4] 30.62 0.8716 27.71 0.7439 26.92 0.7091 25.36 0.7549 29.06 0.8861
ArbSR [13] 30.59 0.8704 27.67 0.7436 26.89 0.7085 25.21 0.7512 28.88 0.8820

LIIF [2] 31.15 0.8762 27.88 0.7522 26.96 0.7044 25.55 0.7626 29.47 0.8938
LTE [8] 31.40 0.8802 27.87 0.7511 26.98 0.7078 25.80 0.7761 29.79 0.8977
Ours 31.46 0.8794 28.01 0.7553 27.03 0.7085 25.92 0.7794 29.95 0.9003

Ours† 31.67 0.8831 28.12 0.7580 27.10 0.7099 26.36 0.7879 30.35 0.9045
Bicubic

×*5.25

26.91 0.7579 23.23 0.6437 23.90 0.6096 22.09 0.5885 21.83 0.7201
MetaSR [4] 29.95 0.8583 27.10 0.7285 26.27 0.6761 24.73 0.7303 28.19 0.8654
ArbSR [13] 29.86 0.8558 26.89 0.7262 26.22 0.6742 24.47 0.7190 27.59 0.8570

LIIF [2] 30.38 0.8611 27.38 0.7310 26.52 0.6824 24.95 0.7374 28.54 0.8779
LTE [8] 30.51 0.8652 27.46 0.7353 26.56 0.6862 25.19 0.7514 28.96 0.8803
Ours 30.56 0.8660 27.49 0.7366 26.57 0.6866 25.32 0.7546 29.14 0.8845

Ours† 30.87 0.8687 27.63 0.7379 26.67 0.6884 25.70 0.7634 29.36 0.8895
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Figure 2. Visual comparison for arbitrary-scale SR models on Urban100 dataset [5]. In the first row, our method can restore a more realistic
shape of the hole. In the second row, our method reconstructs dense textures accurately, while other methods produce blurred results. The
third row shows that our model can keep the original contour of the object as much as possible when the scale is large. This further
illustrates that our method’s ability to restore high-frequency information.
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Figure 3. Visual comparison for arbitrary-scale SR models on BSD100 [9] dataset. The results show that our method also has significant
advantages in reconstructing details when processing natural images (for example, the edge contour of the window in the first row and
second row).
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Figure 4. Visual comparison for arbitrary-scale SR models on Manga109 [10] dataset. It can be observed that our model is able to restore
more clear edges for printed texts at different scales, such as the letters E, A, P, R, and so on.
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