Supplementary Materials of Deep Hashing with Minimal-Distance-Separated Hash Centers

Liangdao Wang ${ }^{1}$, Yan Pan ${ }^{1 *}$, Cong Liu ${ }^{1}$, Hanjiang Lai ${ }^{1}$, Jian Yin ${ }^{1}$, Ye Liu ${ }^{1,2}$
${ }^{1}$ School of Computer Science and Engineering, Sun Yat-Sen University. ${ }^{2}$ Big Data Department, Lizhi Inc.
wangld5@mail2.sysu.edu.cn, panyan5@mail.sysu.edu.cn

We analyze the convergence of the the following optimization problem (Eq.(5) in the main paper).

$$
\begin{align*}
& \min _{h_{i}, v_{1}, v_{2}, v_{3}} \sum_{j: j \neq i} h_{i}^{T} h_{j} \\
& \text { s.t. } h_{i}^{T} H_{\sim i}+v_{3}=(q-2 d) 1_{c-1}, v_{3} \in R_{+}^{c-1} \tag{1}\\
& \quad h_{i}=v_{1}, h_{i}=v_{2}, v_{1} \in \mathcal{V}_{b o x}, v_{2} \in \mathcal{V}_{s p h}
\end{align*}
$$

The augmented Lagrange function w.r.t. Eq.(1) is:

$$
\begin{align*}
& L\left(h_{i}, v_{1}, v_{2}, v_{3}, k_{1}, k_{2}, k_{3}\right)=\sum_{j \neq i} h_{i}^{T} h_{j}+k_{1}^{T}\left(h_{i}-v_{1}\right)+ \\
& \frac{\mu}{2}\left\|h_{i}-v_{1}\right\|_{2}^{2}+k_{2}^{T}\left(h_{i}-v_{2}\right)+\frac{\mu}{2}\left\|h_{i}-v_{2}\right\|_{2}^{2} \\
& +k_{3}^{T}\left(h_{i}^{T} H_{\sim i}+v_{3}-e\right)+\frac{\mu}{2}\left\|h_{i}^{T} H_{\sim i}+v_{3}-e\right\|_{2}^{2} \\
& \text { s.t. } v_{1} \in V_{b o x}, v_{2} \in V_{s p h}, v_{3} \in R_{+}^{c-1} \tag{2}
\end{align*}
$$

where $e=(q-2 d) 1_{c-1}$, and k_{1}, k_{2}, k_{3} are Lagrange multipliers.

We adopt the ℓ_{p}-box ADMM method to solve Eq.(1), which is shown in the red lines in Algorithm 1. Next we will show that, under mild assumptions, by using this $\ell_{p^{-}}$ box ADMM scheme, the optimization problem Eq.(1) will converge.

We first present two assumptions that are adapted from [1], by using our notations.
Assumption 1 Let μ^{t} be the value of the parameter μ at t-th iteration. Then the parameter μ is a finite value, i.e., $\lim _{t \rightarrow \infty} \mu^{t} \in(0, \infty)$.
Assumption 2 Let $k^{t}=\left(k_{1}^{t}, k_{2}^{t}, k_{3}^{t}\right)$ be the values of the Lagrange multipliers k_{1}, k_{2} and k_{3} at t-th iteration. Then the parameter sequence $\left\{k^{t}\right\}$ satisfies a) $\sum_{t=0}^{\infty}\left\|k^{t+1}-k^{t}\right\|_{2}^{2}<$ ∞, which also hints that $k^{t+1}-k^{t} \rightarrow 0$ and b$) k^{t}$ is bounded for all t.

Note that, if we replace the range constraint $S_{b}(z)=$ $\{0 \leq z \leq 1\}$ by a similar range constraint $\{-1 \leq z \leq$ $1\}$, we can verify that the optimization problem Eq.(1) is a

[^0]```
Algorithm 1 Optimization Procedure to Generate Hash Centers
Initialize: initialize \(h_{1}, \ldots, h_{c}\) by Hadamard matrix and Bernoulli sam-
pling. \(\rho=1.02, \max _{\mu}=10^{10}, \epsilon=10^{-6}, T=50\).
For \(\mathbf{t}=\mathbf{1 , 2 , \ldots , \mathrm { T }}\)
 For \(\mathrm{i}=1,2, \ldots\), c
 Set \(v_{1}, v_{2}, v_{3}, k_{1}, k_{2}, k_{3}\) to be zero vectors. Set \(\mu=10^{-6}\).
 Repeat
 Update \(h_{i}\) via Eq.(7) in the main paper.
 Update \(v_{1}, v_{2}, v_{3}\) via Eq.(10) in the main paper.
 Update \(k_{1}, k_{2}, k_{3}\) via Eq .(11) in the main paper.
 Update \(\mu\) by \(\mu \leftarrow \min \left(\rho \mu, \max _{\mu}\right)\).
 Until \(\max \left(\left\|h_{i}-v_{1}\right\|_{\infty},\left\|h_{i}-v_{2}\right\|_{\infty},\left\|h_{i}^{T} H_{\sim i}+v_{3}-e\right\|_{\infty}\right) \leq \epsilon\).
 End For
 \(T \leftarrow T+1\).
End For
Output: \(h_{i}(i=1,2, \ldots c)\)
```

special case of the problem (8) in [1]. By the Proposition 2 in [1], the problem (8) in [1] will converge under some assumptions. Similarly, we have the following theorem.
Theorem 1 (adapted from Proposition 2 in [1]) Given Assumptions 1 and 2, then any cluster point of the whole variable sequence $\left\{\left(h_{i}^{t}, v_{1}^{t}, v_{2}^{t}, v_{3}^{t}, k_{1}^{t}, k_{2}^{t}, k_{3}^{t}\right)\right\}_{0}^{\infty}$ generated by the ADMM method will satisfy the KKT conditions of the problem Eq.(1). Moreover, $\left\{\left(h_{i}^{t}, v_{1}^{t}, v_{2}^{t}\right)\right\}_{0}^{\infty}$ will converge to the binary solutions.

The proof of Theorem 1 is nearly identical to the proof of Proposition 2 in [1] because the optimization problem Eq.(1) can be regarded as a special case of the problem (8) in [1]. The difference in range constraints $S_{b}(z)$ has no impact on the proof.

Then, we illustrate that, by using the ADMM method in Algorithm 1, Assumption 1 and 2 hold and the optimization problem Eq.(1) will converge.

With the update rules $\mu \leftarrow \min \left(\rho \mu, \max _{\mu}\right)$ for the parameter $\mu$, we can see that $\mu$ is always bounded by a constant $\max _{\mu}=10^{10}$. Hence Assumption 1 holds.

With the update rules for $k_{1}, k_{2}$ and $k_{3}$ (Eq.(11) in the main paper) and the stopping criteria $\max \left(\| h_{i}-\right.$ $\left.v_{1}\left\|_{\infty},\right\| h_{i}-v_{2}\left\|_{\infty},\right\| h_{i}^{T} H_{\sim i}+v_{3}-e \|_{\infty}\right) \leq \epsilon$, we can verify that Assumption 2 holds.

Hence, by applying Theorem 1, the optimization prob-
lem Eq.(1) will converge.

## References

[1] Baoyuan Wu and Bernard Ghanem. $\ell_{p}$-Box ADMM: A Versatile Framework for Integer Programming. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(7):16951708, 2019. 1


[^0]:    *Corresponding Author

