Supplementary Materials of Deep Hashing with Minimal-Distance-Separated Hash Centers

Liangdao Wang¹, Yan Pan¹^{*}, Cong Liu¹, Hanjiang Lai¹, Jian Yin¹, Ye Liu^{1,2} ¹School of Computer Science and Engineering, Sun Yat-Sen University. ²Big Data Department, Lizhi Inc.

wangld5@mail2.sysu.edu.cn,panyan5@mail.sysu.edu.cn

We analyze the convergence of the the following optimization problem (Eq.(5) in the main paper).

$$\min_{\substack{h_i, v_1, v_2, v_3 \\ j: j \neq i}} \sum_{\substack{j: j \neq i}} h_i^T h_j$$
s.t. $h_i^T H_{\sim i} + v_3 = (q - 2d) \mathbf{1}_{c-1}, v_3 \in R_+^{c-1},$

$$h_i = v_1, \ h_i = v_2, v_1 \in \mathcal{V}_{box}, \ v_2 \in \mathcal{V}_{sph}.$$
(1)

The augmented Lagrange function w.r.t. Eq.(1) is:

$$L(h_{i}, v_{1}, v_{2}, v_{3}, k_{1}, k_{2}, k_{3}) = \sum_{j \neq i} h_{i}^{T} h_{j} + k_{1}^{T} (h_{i} - v_{1}) + \frac{\mu}{2} ||h_{i} - v_{1}||_{2}^{2} + k_{2}^{T} (h_{i} - v_{2}) + \frac{\mu}{2} ||h_{i} - v_{2}||_{2}^{2} + k_{3}^{T} (h_{i}^{T} H_{\sim i} + v_{3} - e) + \frac{\mu}{2} ||h_{i}^{T} H_{\sim i} + v_{3} - e||_{2}^{2}$$

$$s.t. v_{1} \in V_{box}, v_{2} \in V_{sph}, v_{3} \in R_{+}^{c-1},$$
(2)

where $e = (q - 2d)1_{c-1}$, and k_1, k_2, k_3 are Lagrange multipliers.

We adopt the ℓ_p -box ADMM method to solve Eq.(1), which is shown in the red lines in Algorithm 1. Next we will show that, under mild assumptions, by using this ℓ_p box ADMM scheme, the optimization problem Eq.(1) will converge.

We first present two assumptions that are adapted from [1], by using our notations.

Assumption 1 Let μ^t be the value of the parameter μ at *t*-th iteration. Then the parameter μ is a finite value, i.e., $\lim_{t \to \infty} \mu^t \in (0, \infty)$.

Assumption 2 Let $k^t = (k_1^t, k_2^t, k_3^t)$ be the values of the Lagrange multipliers k_1 , k_2 and k_3 at *t*-th iteration. Then the parameter sequence $\{k^t\}$ satisfies a) $\sum_{t=0}^{\infty} ||k^{t+1} - k^t||_2^2 < \infty$, which also hints that $k^{t+1} - k^t \to 0$ and b) k^t is bounded for all *t*.

Note that, if we replace the range constraint $S_b(z) = \{0 \le z \le 1\}$ by a similar range constraint $\{-1 \le z \le 1\}$, we can verify that the optimization problem Eq.(1) is a

Algorithm 1 Optimization Procedure to Generate Hash Centers **Initialize**: initialize $h_1, ..., h_c$ by Hadamard matrix and Bernoulli sampling. $\rho = 1.02, \max_{\mu} = 10^{10}, \epsilon = 10^{-6}, T = 50.$ For t = 1,2,...,T For i=1,2, ..., c Set $v_1, v_2, v_3, k_1, k_2, k_3$ to be zero vectors. Set $\mu = 10^{-6}$. Repeat Update h_i via Eq.(7) in the main paper. Update v_1, v_2, v_3 via Eq.(10) in the main paper. Update k_1, k_2, k_3 via Eq.(11) in the main paper. Update μ by $\mu \leftarrow \min(\rho\mu, max_{\mu})$. Until $\max(||h_i - v_1||_{\infty}, ||h_i - v_2||_{\infty}, ||h_i^T H_{\sim i} + v_3 - e||_{\infty}) \le \epsilon.$ End For $T \leftarrow T + 1.$ End For **Output**: $h_i \ (i = 1, 2, ...c)$

special case of the problem (8) in [1]. By the Proposition 2 in [1], the problem (8) in [1] will converge under some assumptions. Similarly, we have the following theorem.

Theorem 1 (adapted from Proposition 2 in [1]) Given Assumptions 1 and 2, then any cluster point of the whole variable sequence $\{(h_i^t, v_1^t, v_2^t, v_3^t, k_1^t, k_2^t, k_3^t)\}_0^\infty$ generated by the ADMM method will satisfy the KKT conditions of the problem Eq.(1). Moreover, $\{(h_i^t, v_1^t, v_2^t)\}_0^\infty$ will converge to the binary solutions.

The proof of Theorem 1 is nearly identical to the proof of Proposition 2 in [1] because the optimization problem Eq.(1) can be regarded as a special case of the problem (8) in [1]. The difference in range constraints $S_b(z)$ has no impact on the proof.

Then, we illustrate that, by using the ADMM method in Algorithm 1, Assumption 1 and 2 hold and the optimization problem Eq.(1) will converge.

With the update rules $\mu \leftarrow \min(\rho\mu, max_{\mu})$ for the parameter μ , we can see that μ is always bounded by a constant $\max_{\mu} = 10^{10}$. Hence Assumption 1 holds.

With the update rules for k_1 , k_2 and k_3 (Eq.(11) in the main paper) and the stopping criteria $\max(||h_i - v_1||_{\infty}, ||h_i - v_2||_{\infty}, ||h_i^T H_{\sim i} + v_3 - e||_{\infty}) \leq \epsilon$, we can verify that Assumption 2 holds.

Hence, by applying Theorem 1, the optimization prob-

^{*}Corresponding Author

lem Eq.(1) will converge.

References

[1] Baoyuan Wu and Bernard Ghanem. ℓ_p -Box ADMM: A Versatile Framework for Integer Programming. *IEEE Transactions* on Pattern Analysis and Machine Intelligence, 41(7):1695–1708, 2019. 1