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(b) Examples (raw images with built graphs) for visual graph matching

Figure 6. The 3D points in (a) are detected by colmap [31, 32] which are available as labels in IMC-PT [18]. The blue points denote our
selected anchors, based on which our IMC-PT SparseGM-50 is built, as shown in (b). The lines connecting anchors are the edges we build
through Delaunay triangulation.

Table 7. Comparison of existing visual graph matching benchmarks.

dataset name ‘ #instances # classes avg#nodes avg#edges #universe partial rate best-known f1

CMU house/hotel 212 2 30 \ 30 0.00% 100% (RRWM [7])
Willow ObjectClass 404 5 10 \ 10 0.00% 97.8% (GANN [46])
CUB2011 11,788 200 12 \ 15 20.00%  83.2% (PCA-GM [44])
Pascal VOC Keypoint 8,702 20 9.07 \ 61023 28.50%  62.8% (BBGM-Multi [29])
IMC-PT-SparseGM-50 (ours) 25,765 16 21.36 54.71 50 57.28%  72.9% (ours)
IMC-PT-SparseGM-100 (ours) 25,765 16 44.48 123.99 100 55.52% 71.5% (ours)

A. Details of IMC-PT-SparseGM Benchmark

A.l. Visualization

See Fig. 6a for a visualization of the 3D point cloud built
from the collection of Reichstag photos, where most points
gather near the main part of the building. The red points
are the anchors (50 anchors in this example) that are re-
garded as the keypoints in our visual graph matching bench-
mark. These anchor points are then projected back to the 2D
images, whereby the visibility of anchors is judged by the
method described in the main paper. Examples of images
and keypoints from our benchmark are visualized in Fig. 6.

A.2. Details about hyperparameters

We elaborate on the following three insights of our pro-
posed approach to transforming the original IMC-PT image
matching dataset to our IMC-PT-SparseGM benchmark for
visual graph matching. These insights are omitted in the
main paper due to page limitations. Our approach only in-
volves four hyperparameters:

1) To extract some keypoints that can well represent the

feature of the original building and to reduce the impact of
noise, we set one hyperparameter of the frequency threshold
of keypoints existence, screening out keypoints frequently
appearing in the sample images.

2) To reduce the complexity of graph matching, we ran-
domly extract a hyperparameter of 50 keypoints from the
keypoints we selected before. During the extraction, to
maintain a good representation of the original building, we
set a hyperparameter of the minimal euclidean distance of
two keypoints to ensure that the extracted keypoints are rel-
atively evenly distributed in the main part of the building.

3) For every sample image of a certain building, we in-
tend to check whether the extracted keypoints exist in the
image. Using the annotation of the whole keypoints exist-
ing in the image, for every selected keypoints, we calculate
its minimal euclidean distance between the keypoints in the
image and judge its existence in the image based on an-
other minimal euclidean distance hyperparameter threshold
which indicates whether the keypoint is close to the present
image or not, removing some of the keypoints covered by
the exterior scene to some extent.



Table 8. Number of visual graphs in each class of IMC-PT-SparseGM benchmark. * refers to test class.

class name brandenburg_gate grand_place_brussels palace_of_westminster reichstag*

# visual graphs 1,363 1,083 983 75

class name taj_mahal westminster_abbey buckingham_palace =~ hagia_sophia_interior
# visual graphs 1,312 1,061 1,676 889

class name pantheon_exterior sacre_coeur* temple_nara_japan colosseum_exterior
# visual graphs 1,401 1,179 904 2,063
class name notre_dame_front_facade prague_old_town_square st_peters_square* trevi_fountain
# visual graphs 3,765 2,316 2,504 3,191
Table 9. F1 (%) on SPair-71k (unfiltered setting). Our methods are marked as gray.
GM Network PMH ‘aem bike bird boat bottle bus  car cat chair cow dog horse mbike person plant sheep train  tv ‘ mean
ZACR ZACR 329 333 457 246 620 135 360 562 174 475 327 190 407 427 373 348 525 600 | 383
PCA-GM None 365 256 489 247 507 291 192 546 301 390 429 340 313 271 705 311 566 752 | 404
BBGM None 429 438 653 346 626 476 256 680 386 620 578 428 441 360 832 454 867 903 | 543
None 454 423 610 312 622 533 342 653 370 595 547 413 448 389 775 442 778 899 | 534
Thresholding | 50.2 429 634 299 62.1 539 348 657 373 627 561 438 45.7 41.8 77.1 452 79.0 904 | 54.6+0.5
Ngmy2 Dummynode | 477 416 621 303 590 497 274 683 339 624 573 467 464 427 787 435 805 895 | 538404
AFAT-U(ours) | 50.3 43.5 638 324 500 60.0 397 686 361 636 565 463 514 433 770 512 8l.1 894 563+04
AFAT-I(ours) | 504 43.6 639 321 612 585 380 684 357 627 564 477 519 443 785 507 792 912 56.4+0.6
Dummy node | 49.0 413 640 303 573 550 374 648 366 630 580 444 464 426 684 423 832 919 | 542403
GCAN AFAT-U(ours) | 467 433 658 333 615 549 352 684 377 599 560 47.6 472 435 803 477 838 89.0 557+04
AFAT-Iours) | 46.8 443 659 324 615 538 337 684 381 60.1 563 479 483 438 812 484 829 880 557404
A.3. More Details Algorithm 2 GreedyTopK

Tbl. 7 shows comparison among our released IMC-
PT-SparseGM benchmark and other existing vision graph
matching benchmarks. Note that in our released IMC-
PT-SparseGM benchmark, the edges are previously built
through Delaunay triangulation, thus saving users’ time
of online graph-building. Tbl. 8 exhibits number of vi-
sual graphs (with raw images) in each class of IMC-PT-
SparseGM benchmark.

In addition, the anchors are not fixed in IMC-PT-
SparseGM, and can be edited via tuning hyperparame-
ters, allowing users to build data that fulfills their own
demands. We provide code and instructions for users to
build their own data in IMC-PT-SparseGM dataset page:
https://github.com/Thinklab-SJTU/IMCPT-
SparseGM-dataset.

B. Results on SPair-71k Dataset

To further validate the general effectiveness of our pro-
posed methods, we also perform experiments on SPair-
71k (http://cvlab.postech.ac.kr/research/
SPair-71k/) dataset. The dataset contains 18 categories
of total 70,958 image pairs, including 53,340 for training
and 12,234 for testing. The image pairs are different in
scale, truncation, and occlusion, whereby outliers are preva-
lent. We still follow the “unfiltered” setting and show our

Input: confidence matrix Doy, f; k; permutation matrix P.
Output: final permutation matrix P.

1: Deong = Deony © P; b filter the matching confidence
2. set P to all-zero matrix; set m = 0; > initialization
3: while m < k do

4 r, ¢ = argmax (Dcon f); > the most confident match
5: f’m =1, > select this match
6 Deongre =05 > to select next match
7: m=m++1; > count selected matches
8: end while

9

: return P; > final matching result, for testing

experimental results in Tbl. 9. Consistent with the exper-
imental results on other datasets, our methods outperform
other PMH methods on both GM network embodiments.

C. GreedyTopK Algorithm for Post-process

In our proposed framework, a GreedyTopK algorithm is
adopted in inference stage to greedily select top-k matches
based on the confidence from the output of Hungarian al-
gorithm, i.e., the permutation matrix P. Algorithm 2 shows
the procedure of GreedyTopK algorithm, where ©® denotes
element-wise product.


https://github.com/Thinklab-SJTU/IMCPT-SparseGM-dataset
https://github.com/Thinklab-SJTU/IMCPT-SparseGM-dataset
http://cvlab.postech.ac.kr/research/SPair-71k/
http://cvlab.postech.ac.kr/research/SPair-71k/

	. Introduction
	. Related Work
	. Proposed Method
	. Top-k-based Deep Partial Graph Matching
	. Attention-Fused Aggregation for k Prediction
	AFA-I: Individual Graph Modeling
	AFA-U: Unified Bipartite Graph Modeling
	Training the AFA Modules

	. Implementation Details

	. Our IMC-PT-SparseGM benchmark
	. Introducing The Original IMC-PT Benchmark
	. Building IMC-PT-SparseGM benchmark
	. Details of IMC-PT-SparseGM

	. Experiments
	. Metric and Peer Methods
	. Results and Discussions
	. Further Studies

	. Conclusion
	. Details of IMC-PT-SparseGM Benchmark
	. Visualization
	. Details about hyperparameters
	. More Details

	. Results on SPair-71k Dataset
	. GreedyTopK Algorithm for Post-process

