
Supplementary Material for “Detecting Everything in the Open World: Towards
Universal Object Detection”

1. Dataset Details

We provides more detailed descriptions in this section
about the datasets we use in the main paper and in this sup-
plementary material.

COCO [20]. The COCO dataset contains dense and high-
quality annotations from human labor and covers 80 com-
mon classes from nature-domain images. For our open-
world experiments, we select 35k images from its training
set for training our UniDetector. The high-quality annota-
tions also make the COCO dataset widely used in traditional
object detection. Because of this, we also conduct experi-
ments on the COCO dataset for evaluating our UniDetector
in the closed world. We train our UniDetector on the 115k
images from the COCO 2017 training set and evaluate it
on the validation set of 5,000 images. We also report the
closed-world AP on the test-dev split with 20k images.

Objects365 [29]. The Objects365 dataset contains high-
quality annotations with 365 categories in the natural do-
main. We randomly select 60k images from the training set
of its v1 version for our open-world experiments.

OpenImages [16]. We adopt the 2019 challenge version of
the OpenImages dataset, which contains 500 categories and
more than 1.7M images. We select 78k images for our open-
world experiments. Because of its large category number,
its category distribution is relatively long-tailed.

LVIS [12]. The v0.5 version contains 57,563 images for
training, 5,000 images for validation and 1,230 categories.
The v1 version contains 100,170 images for training, 19,809
images for validation and 1,203 categories. We report re-
sults of our UniDetector on their validation sets for evaluat-
ing the open-world performance. Besides, to compare with
other open-vocabulary methods, we also train our UniDe-
tector on the training set without rare category annotations.

ImageNet [28]. The complete set of the ImageNet dataset
contains over 21k categories. However, only 3,622 cate-
gories among them have bounding box annotations. It is
also used to evaluate our open-world performance. Besides,
we also introduce images from the ImageNet dataset with
the overlapping classes of LVIS and only category annota-

tions for open-vocabulary experiments, for comparison with
previous methods [41].

VisualGenome [15]. We adopt the most recent version
(v1.4) of the VisualGenome dataset, which consists of 7,605
categories in total. It covers the largest vocabularies with
bounding box annotations so far. We utilize it to evaluate
the open-world performance of our UniDetector.

Mapillary Vistas [22]. The Mapillary Vistas Dataset is a
street-level dataset. It contains 37 instance-level categories.
In this supplementary material, we further introduce the 18k
images from the training set to train our UniDetector for
better generalization ability in traffic-domain images.

Pascal VOC [9]. It annotates 20 common categories from
nature-domain images. The 16k images from the VOC0712
trainval set are usually adopted for training. We adopt the
4,952 images from the VOC2007 test set for evaluation.

VIPER [27]. It covers 10 categories collected from high-
resolution traffic videos, with 13k images as the training set
and 5k images as the validation set.

Cityscapes [4]. The Cityscapes dataset contains 8 cate-
gories from traffic images. Its training set contains 2,975
images and the validation set contains 500 images.

Scannet [5]. The Scannet dataset is an indoor dataset with
13 indoor instance-level categories. It contains 25k images
in total. We select the first 80% as the training set and the
rest of them as the validation set.

WildDash [38]. The WildDash dataset is mainly about ro-
bustness in driving scenarios. It provides 13 categories and
4k images for evaluation.

CrowdHuman [30]. The CrowdHuman dataset is about hu-
mans in crowded scenes. It contains 15k images. We use the
visible bounding box annotations for detection.

KITTI [11]. We used the RVC challenge version that has
instance segmentation labels, which contain 200 images and
8 categories.

ODinW [17]. We also adopt the 13 ODinW datasets with
various domains and categories for demonstrating the uni-
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Figure 1. Visualization of our UniDetector to detect diversified categories.

versality of our UniDetector.

2. Visualized Results

Visualized results to detect diversified categories. We
provide visualized results from our UniDetector to demon-
strate its ability to detect everything. The visualization is
illustrated in Fig. 1. First, our UniDetector recognizes
many rare categories that are not available in training, such
as dodo, a bird species that is extinct now, or exhaust
fan, rooftop and so on. Second, our UniDetector is able

to detect fine-grained categories and classes that are a part of
an object, like man, african elephant, face. Third,
our UniDetector can detect categories that are composed
of many words, such as house of cards, small
computer system interface. These demonstrate
that our UniDetector well understands the meaning of nat-
ural languages, thus has the strong generalization ability to
novel classes. The universality of our UniDetector in de-
tecting everything can thus be demonstrated.

Visualized results to detect diversified scenes. We fur-
ther provide visualized images from diversified scenes (i.e.,



Figure 2. Visualization of our UniDetector to detect diversified scenes.

domains) in Fig. 2. As we can see, our UniDetector per-
forms well not only on common scenes that appear during
training, like traffic, indoor, but also generalizes well
on unseen domains like underwater, UAV, thermal,
watercolors. As a result, our UniDetector makes a sat-
isfying performance in various scenes. The universality of
UniDetector in detecting every scene can be demonstrated.

3. More Closed-world Detection Results

We provide more closed-world detection results in this
section. We train our UniDetector on the COCO 2017

training set and evaluate its performance on the 2017 test-
dev set. We adopt the ResNet101 and ResNet50x4 (i.e.,
ResNet200) [13] as our backbone and train our UniDetec-
tor with the 1× schedule. Our UniDetector has a pure CNN
structure so we compare it with existing CNN-based detec-
tors. They mainly utilize ResNeXt [37], DCN [6], SENet
[14], EfficientNet [33] or SpineNet [8] as their backbones,
with similar or larger computation budgets. The compari-
son is listed in Tab. 1.

As we can see, with the ResNet101 backbone, we
achieve the 51.8% box AP on the test-dev set, which not
only surpasses existing detectors with the same ResNet101



Table 1. The performance of UniDetector in the closed world with larger backbones. The models are trained on the COCO train2017
set and evaluated on the COCO test-dev. TTA is test-time augmentation, ME means more epochs of training. We compare our UniDetector
with existing state-of-the-art detectors with the pure CNN sturcture.

Methods Backbone ME TTA AP AP50 AP75 APS APM APL

Faster RCNN [26] ResNet101 12e 36.7 54.8 39.8 19.2 40.9 51.6
RetinaNet [19] ResNeXt101 18e 40.8 61.1 44.1 24.1 44.2 51.2

Cascade RCNN [1] ResNet101 18e 42.8 62.1 46.3 23.7 45.5 55.2
Libra R-CNN [23] ResNeXt-101 12e 43.0 64.0 47.0 25.3 45.6 54.6

FCOS [35] ResNeXt101 24e 43.2 62.8 46.6 26.5 46.2 53.3
ATSS [40] ResNeXt101-DCN 24e 47.7 66.5 51.9 29.7 50.8 59.4
OTA [10] ResNeXt101-DCN 24e 49.2 67.6 53.5 30.0 52.5 62.3

IQDet [21] ResNeXt101-DCN 24e 49.0 67.5 53.1 30.0 52.3 62.0
Sparse R-CNN [7] ResNeXt101-DCN 36e 48.9 68.3 53.4 29.9 50.9 62.4
EfficientDet [34] EfficientNet-B7 ∼ 600e 52.2 71.4 56.3 - - -

SpineNet [8] SpineNet190 ∼ 500e 52.1 71.8 56.5 35.4 55.0 63.6
Dyhead [7] ResNeXt101-DCN 24e 52.3 70.7 57.2 35.1 56.2 63.4

R(Det)2 [18] ResNeXt101-DCN 12e 50.0 69.2 54.3 30.9 53.0 63.9
UniDetector (ours) ResNet101 12e 51.8 70.2 56.8 35.6 55.5 62.2
UniDetector (ours) ResNet200 12e 55.8 74.1 61.2 37.8 58.7 68.1

ATSS [40] ResNeXt101-DCN 24e ✓ 50.7 68.9 56.3 33.2 52.9 62.4
IQDet [21] ResNeXt101-DCN 24e ✓ 51.6 68.7 57.0 34.5 53.6 64.5
OTA [10] ResNeXt101-DCN 24e ✓ 51.5 68.6 57.1 34.1 53.7 64.1

Dynamic R-CNN [39] ResNet-101-DCN 36e ✓ 50.1 68.3 55.6 32.8 53.0 61.2
TSD [31] SENet154-DCN 36e ✓ 51.2 71.9 56.0 33.8 54.8 64.2

Sparse R-CNN [7] ResNeXt101-DCN 36e ✓ 51.5 71.1 57.1 34.2 53.4 64.1
BorderDet [25] ResNeXt101-DCN 24e ✓ 50.3 68.9 55.2 32.8 52.8 62.3

RepPoints v2 [2] ResNeXt101-DCN 24e ✓ 52.1 70.1 57.5 34.5 54.6 63.6
RelationNet++ [3] ResNeXt101-DCN 24e ✓ 52.7 70.4 58.3 35.8 55.3 64.7

DyHead [7] ResNeXt101-DCN 24e ✓ 54.0 72.1 59.3 37.1 57.2 66.3
R(Det)2 [18] ResNeXt101-DCN 24e ✓ 54.1 72.4 59.4 35.5 57.0 67.3

UniDetector (ours) ResNet200 12e ✓ 56.9 34.8 62.5 40.0 59.4 68.4

backbone, but even outperforms many models with the
more complicated ResNeXt101-DCN backbone. For ex-
ample, we are 1.8% higher in box AP than R(Det)2 with
the ResNeXt101-DCN backbone. We achieve better detec-
tion performance with a lighter backbone, which strongly
illustrates the effectiveness of our UniDetector in the closed
world. We further introduce the ResNet200 backbone, and
obtain the 55.8% box AP with just 12 epochs. In com-
parison, Dyhead [7] obtains the 52.3% AP with 24 epochs,
EfficientDet [34] requires about 600 epochs for the 52.2%
AP and SpineNet [8] obtains the 52.1% AP with about 500
epochs. With significantly less training epochs, we achieve
the 3.5% higher AP. The superiority of our UniDetector is
consistent no matter for small or large objects - APS sur-
passes existing methods by 2.4%, APM is 2.5% higher and
APL is even 4.2% higher. We also notice that our 55.8% AP
is even higher than the results of existing detectors with test-
time augmentation (TTA). This further demonstrates the ef-
fectiveness of our UniDetector. By further introducing test-
time augmentation into our UniDetector, we achieve the

56.9% AP. The excellent performance in the close world
validates its universality.

We note that we actually introduce the cascade structure
for above experiments. We modify the cascade structure a
little to adapt our decoupling training manner. The com-
parison with the original Cascade RCNN [1] is illustrated
in Fig. 3. As the class-specific classification of the RoI
classification stage hampers the universality ability of the
proposal generation stage, we do not use the box regression
layer in the RoI head to refine region proposals, which is
used in Cascade RCNN (Fig. 3a). Instead, we pass the ex-
tracted region proposals directly into the RoI heads in the
cascade structure, as in Fig. 3b. This structure better adapts
our decoupling training manner.

4. Data Sampler Analysis

Here we analyze the effect of data samplers in our
UniDetector. Large-scale training is necessary to guaran-
tee sufficient information for universality. However, long-
tailed distribution is an unavoidable problem for datasets



Table 2. Analysis on the data sampler for detecting in the closed world and open world. The model is trained on 78k images from
OpenImages and LVIS images are adopted for open-world evaluation. For our UniDetector, the two samplers listed are used in the proposal
generation stage and RoI classification stage separately.

model sampler open world (LVIS v0.5) closed world (OpenImages)
AP APr APc APf APhierarchy AP AP50

Faster RCNN
random - - - - 39.8 15.2 25.5

CAS [24] - - - - 49.8 19.5 32.4
RFS [12] - - - - 46.4 17.3 28.9

UniDetector

random + random 16.8 21.8 17.6 13.8 59.0 25.7 36.9
random + CAS 15.7 20.2 16.5 13.0 58.3 23.7 34.7
random + RFS 16.6 21.4 17.3 14.0 59.5 25.7 36.8
CAS + random 14.4 20.1 15.3 10.9 49.5 15.3 24.2

CAS + CAS 13.0 16.6 13.8 10.4 49.7 14.4 23.1
CAS + RFS 13.8 18.0 14.5 11.1 50.3 15.9 24.9

RFS + random 13.5 14.7 15.1 10.9 47.6 15.1 23.2
RFS + CAS 12.5 13.8 13.8 10.4 47.5 13.4 21.4
RFS + RFS 13.4 14.7 14.9 11.1 48.2 15.2 23.6
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Figure 3. Illustration for the cascade structure we use. (a): The
original cascade structure in Cascade RCNN. (b): The cascade
structure we use to adapt our decoupling training manner.

with large vocabularies. Suitable data samplers are simple
yet effective for alleviating the adverse effect of the long-
tailed problem. The common data samplers are as follows:

Random sampler. It samples images randomly from
the training set. Every image participates in the training
equally. When data become long-tailed, this way sam-
ples head categories more frequently than tail classes. In
traditional object detection, this makes tail classes under-
represented easily.

Class-aware sampler (CAS) [24]. The CAS sampler first
randomly selects categories, then sample images contain-
ing the selected categories. Such a sampler makes different
categories participate in training equally.

Repeat factor sampler (RFS) [12]. It defines the category-
level repeat factor as rc = max(1,

√
1/fc), where fc is the

category frequency. The image-level sampler is its maxi-
mum value of rc. The RFS sampler also selects tail cate-
gories more frequently.

In this section, we train our UniDetector with 78k images
from OpenImages because of the long-tailed distribution of
the OpenImages dataset. We evaluate it on the LVIS v0.5
dataset for the open-world performance and on the Open-
Images dataset for the closed-world performance. As the
category labels of OpenImages are hierarchically defined,
we also introduce the APhierarchy from its official challenge
to evaluate the closed-world performance. The analysis re-
sults are listed in Tab. 2.

We first train a traditional Faster RCNN model, which
can only detect in the closed world. The random sampler
generates a 39.8% APhierarchy. In comparison, the CAS
and the RFS bring a 10.0% and 6.6% improvement respec-
tively. The significant improvement demonstrates that these
data sampling strategies well alleviate the long-tailed prob-
lem in the closed world. As different data samplers nearly
do not bring any extra computation budget, they are widely
adopted in traditional large-scale object detection.

We then conduct experiments using our UniDetector.
These samplers are adopted in both the proposal genera-
tion stage and the RoI classification stage. We first train the
proposal generation stage with the random sampler and in-
troduce different samplers in the RoI classification stage.
We find that compared to the random sampler, the CAS
and RFS are no longer effective in the closed world. The
RFS only brings a 0.5% APhierarchy improvement, and the
CAS even hurts the closed-world performance. Meanwhile,
our UniDetector also obtains a significantly better closed-
world performance, more than 10% improvement than tra-



ditional Faster RCNN. The above phenomenon is because
our UniDetector utilizes language embeddings for classi-
fication. These language embeddings come from the text
description, thus are not limited by the long-tailed distribu-
tion of the visual information. Therefore, the choice of data
sampler is no longer effective for our UniDetector.

For the open-world performance, we find that the ran-
dom sampler obtains the 16.8% box AP on LVIS v0.5. In
the open world, the CAS and RFS do not contribute to the
AP improvement. Instead, they decrease the box AP by
1.1% and 0.2% respectively. For open-world inference, how
to generalize to novel categories is quite essential. Different
data sampler cannot improve this ability, thus is on longer
helpful in the open world environments.

We finally train the proposal generation stage with dif-
ferent samplers, and find that the CAS and RFS hurt the
performance more seriously, no matter for the open world
or closed world. This is easy to understand since the classi-
fication in this stage is class-agnostic, which is robust to the
long-tailed distribution of categories. Because of the above
reasons, we choose to use the random sampler.

5. Loss Function Analysis
Likewise, the choice of the loss function is also an impor-

tant issue in traditional large-scale object detection, where
the long-tailed problem happens. The commonly used loss
functions are as follows:

Cross entropy loss and sigmoid based loss. The cross
entropy loss and sigmoid based binary cross entropy loss
are widely adopted in the classification problem. They are
usually based on the softmax activation function and the
sigmoid function. However, they treat different categories
equally, thus suffer from the long-tailed problem in tradi-
tional object detection.

Equalization loss v2 and seesaw loss [32, 36]. These two
loss functions adjust the gradients of negative samples to
balance the learning process. As a result, the performance
on tail classes can be improved.

Federate loss [42]. The federate loss is conducted only on a
subset of classes for training to adapt the LVIS dataset. The
subset contains all positive samples and a random subset of
negative samples. The negative categories are sampled in
proportion to their square-root frequency.

In this section, similarly, we train our UniDetector with
78k images from OpenImages and use the LVIS v0.5 dataset
for open-world evaluation. The analysis results are listed in
Tab. 3. We notice that both the equalization loss v2 and
seesaw loss contribute to better performance in the closed
world - 9.7% and 0.7% improvement separately. Their ef-
fectiveness in traditional detection is thus demonstrated.

However, according to our analysis above, language em-
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Figure 4. The open-world performance v.s. the hyperparame-
ter γ. The LVIS AP is robust to the value of γ.

beddings in our UniDetector greatly alleviate the long-tailed
distribution. This makes loss functions like equalization
loss v2 or seesaw loss affect little in the open world. In
this situation, the generalization ability to novel categories
is quite important, and sigmoid function well enhances such
ability. Unlike the softmax activation function, whose lat-
eral inhibition effect is obvious, the classification of base
and novel categories will not interfere with each other un-
der the sigmoid function. This promotes the novel category
detection in the open world. As a result, the sigmoid based
loss obtains the 16.2% LVIS AP, 0.5% higher than that from
the cross entropy loss. We also observe that such property
ofthe sigmoid function boosts the closed world detection
too, improving APhierarchy from 58.2% to 59.9%.

One problem of sigmoid based loss is that its value be-
comes larger as the number of categories increases. For
large-vocabulary datasets, this easily interferes with the col-
laborative learning of classification and regression. To ad-
dress this issue, we only randomly select a subset of nega-
tive categories to calculate the loss function. This produces
a 16.8% LVIS AP, 0.6% improvement. In comparison, al-
though federate loss also picks negative categories, sam-
pling according to frequency does not adapt to the situation
where the long-tailed problem is not serious. Therefore, it
fails to boost the performance of our UniDetector.

6. The hyperparameter γ

We further tune the value of γ and plot the results in Fig.
4. As we can see, the open-world AP is relatively robust to
the value of γ. The AP remains the maximum value in the
range from 0.6 to 0.8 of γ. Such hyper-parameter robust-
ness makes our probability calibration easy to implement in
practice.

7. Comparative Visualized Results
We finally conduct visualized analysis on the COCO

open-vocabulary setting and compare our results with the
Faster RCNN baseline and Detic [41]. As we can see, Faster
RCNN is restricted by the pure visual information during
training, thus cannot recognize novel categories at all. For



Table 3. Analysis on the loss function for detecting in the closed world and open world. The model is trained on 78k images from
OpenImages and LVIS images are adopted for open-world evaluation.

model loss open world (LVIS v0.5) closed world (OpenImages)
AP APr APc APf APhierarchy AP AP50

Faster RCNN
cross entropy - - - - 39.8 15.2 25.5

equalization loss v2 [32] - - - - 49.5 19.6 31.5
seesaw loss [36] - - - - 40.5 14.5 24.0

UniDetector

cross entropy 15.7 20.1 16.4 13.0 58.2 24.2 35.9
equalization loss v2 [32] 14.8 18.3 15.9 12.0 50.1 18.0 26.6

seesaw loss [36] 13.7 16.3 14.6 11.7 58.9 27.3 39.6
sigmoid 16.2 20.5 17.1 13.2 59.9 28.3 41.9

federate loss [42] 16.3 20.4 17.0 13.7 58.7 25.3 36.2
sigmoid (random negative) 16.8 21.8 17.6 13.8 59.0 25.7 36.9

example, it can only detect the dog as a bird for the first
image, and detect the airplane as a surfboard for the sec-
ond image, the bus as a truck for the third image. In ad-
dition, the couch is also missed in the fourth image. Detic
adopts language embeddings from CLIP, thus has the ability
to recognize categories that do not appear during training.
For example, it produces the dog and the cat box for the
first image. However, its classification is seriously biased to
seen categories. For example, the incorrect bird prediction
still exists in the first image, and the correct unseen cate-
gories still cannot be predicted for the rest three images. Be-
cause of our decoupling training manner and the probability
calibration, our UniDetector well alleviates the self-bias to
seen categories. As a result, our UniDetector generates cor-
rect detection boxes for unseen categories, and avoids over-
confident incorrect seen category boxes. This comparative
visualized result demonstrates the generalization ability of
our UniDetector to unseen categories in the open world.

8. Limitation and Social Impact
Our method does not consider the suitable language

prompt for the object detection task yet, and this can be fur-
ther investigated. We also recognize that our method might
lead to privacy concerns if not properly utilized.
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Probabilistic two-stage detection. arXiv:2103.07461, 2021.


