
Supplementary Materials for “Dynamic Graph Learning with Content-guided
Spatial-Frequency Relation Reasoning for Deepfake Detection”

Yuan Wang1,2,4 Kun Yu2 Chen Chen1* Xiyuan Hu3 Silong Peng1,4,5

1Institute of Automation, Chinese Academy of Sciences 2Alibaba Group
3School of Computer Science and Engineering, Nanjing University of Science and Technology

4University of Chinese Academy of Sciences 5Beijing Visystem Co.Ltd
{wangyuan2020, chen.chen}@ia.ac.cn yukun.yk@alibaba-inc.com xiyuan.hu@foxmail.com

1. Experiments

1.1. Experimental Results

Cross-testing Evaluation on FaceForensics++. As

shown in Table 1, to further demonstrate the generaliza-

tion ability of our proposed SFDG method among different

manipulated types, we conduct additional experiments on

FF++ (LQ) [10] benchmark dataset that contains counter-

feit images from four manipulated techniques, i.e., Deep-

fakes (DF) [15], Face2Face (F2F) [14], FaceSwap (FS) [7],

and NeuralTextures (NT) [13]. We train our model on one

of them and test it on all four approaches. We refer to the

experiment results in DCL [11]. From Table 1, our method

consistently surpasses all competitors by a clear margin in

most cases. Specifically, when training on DF and testing

on F2F, FS and NT, our approach achieves 12.08%, 23.48%
and 15.05% gain in terms of AUC respectively. These over-

whelming results give explanations that our method suffi-

ciently excavates adaptive frequency features and discover

the relation of essential forged clues in spatial and fre-

quency domain via dynamic graph learning, thus improving

the cross-manipulation performance.

Robustness Analysis on FF++/WildDeepfake Dataset. In

view of the ubiquity of image processing on social media,

we investigate the robustness of our proposed model by

training on original WildDeepfake [18] dataset and testing

on WildDeepfake samples that are subverted by common

unseen perturbations suggested by [1,4–6]. As shown in Ta-

ble 2, a serious of experiments are conducted to demonstrate

the robustness of our proposed SFGD against noise and blur

perturbations. In detail, we train our SFDG model on the

clean data and then insert GaussianNoise, SaltPepperNoise,

and GaussianBlur to the test samples. We evaluate the ro-

bustness of the forgery detection model utilizing the decay
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Testing (AUC)
Training Model

DF F2F FS NT

Ef-b4 [12] 99.97 76.32 46.24 72.72

MADD [17] 99.92 75.23 40.61 71.08

GFF [8] 99.87 76.89 47.21 72.88

DCL [11] 99.98 77.13 61.01 75.01

DF

SFDG (Ours) 99.73 86.45 75.34 86.64
Ef-b4 [12] 84.52 99.20 58.14 63.71

MADD [17] 86.15 99.13 60.14 64.59

GFF [8] 89.23 99.10 61.30 64.77

DCL [11] 91.91 99.21 59.58 66.67

F2F

SFDG (Ours) 97.38 99.36 73.54 72.61
Ef-b4 [12] 69.25 67.69 99.89 48.61

MADD [17] 64.13 66.39 99.67 50.10

GFF [8] 70.21 68.72 99.85 49.91

DCL [11] 74.80 69.75 99.90 52.60

FS

SFDG (Ours) 81.71 77.30 99.53 60.89
Ef-b4 [12] 85.99 48.86 73.05 98.25

MADD [17] 87.23 48.22 75.33 98.66

GFF [8] 88.49 49.81 74.31 98.77

DCL [11] 91.23 52.13 79.31 98.97

NT

SFDG (Ours) 91.73 70.85 83.58 99.74

Table 1. Cross database evaluation in terms of AUC (%) on differ-

ent manipulated types. The gray background indicates the intra-

domain performance.

of Acc and AUC respectively. The experiment results ver-

ify that our method has outstanding performances in most

disturbance cases. Furthermore, to reveal the robustness of

our SFGD method, we perform a series of experiments on

WildDeepfake datasets under more unseen corruptions, i.e.,

Compress, Contrast, Saturate and Pixelate as shown in Ta-

ble 3. We refer the experimental results from RECCE [1].

We can observe that our model still outperforms some cur-

rent state-of-the-art works significantly except Pixelate dis-

turbance. We principally attribute the performance gain to

the proposed multiscale attention maps with rich context in-

formation, thus insusceptible to unseen perturbations.
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Method
+GaussianNoise +SaltPepperNoise +GaussianBlur

ΔAUC(FF) ΔAUC(Wild) ΔAUC(FF) ΔAUC(Wild) ΔAUC(FF) ΔAUC(Wild)

Xception [2] -0.0397 -0.0082 -0.3330 -0.1373 -0.1994 -0.0664

Add-Net [18] -0.2862 -0.3327 -0.3445 -0.3589 -0.3445 -0.1895

F3Net [9] -0.0838 -0.0248 -0.3891 -0.3407 -0.2077 -0.1567

MADD [17] -0.0058 -0.0139 -0.2494 -0.1813 -0.2475 -0.1829

PEL [4] -0.0031 -0.0050 -0.2079 -0.0483 -0.1274 -0.1216
SFDG (Ours) -0.0018 -0.0086 -0.1144 -0.0223 -0.0867 -0.4831

Table 2. Robustness evaluation in terms of the decay of AUC under three types of perturbations. Our SFDG performs admirably under

several common perturbations.

Methods Compress Contrast Saturate Pixelate Average

Xception [2](CVPR′2017) 86.01 81.90 84.96 66.24 79.78

Ef-b4 [12](ICML′2019) 87.63 84.25 86.71 72.93 82.88

RFM [16](CVPR′2021) 83.74 79.77 82.59 71.25 79.35

Add-Net [18](MM′2020) 83.34 89.85 85.13 64.33 80.66

F3-Net [9](ECCV′2020) 86.71 86.53 87.67 73.23 83.54

MADD [17](CVPR′2021) 89.64 89.30 90.37 79.44 87.19

RECCE [1](CVPR′2022) 89.65 91.19 91.74 83.88 89.15

SFDG (Ours) 91.43 92.02 92.11 82.71 89.56

Table 3. Robustness evaluation in terms of AUC (%) on WildDeepfake dataset. “Average” indicates the mean score across all perturbations.

Our SFGD performs more robust than all listed previous methods except pixelate.

Evaluating on DFDC Dataset. DFDC [3] is the most chal-

lenging dataset for face forgery detection tasks because of

prominent manipulated quality of counterfeit videos in this

dataset. Since seldom existing literature report intra-testing

performance on it, we train the proposed SFDG model on

the whole training set of DFDC and compare the corre-

sponding Acc, AUC and LogLoss evaluation criteria with

the re-implement results introduced in RECCE [1]. As

shown in Table 4, our method outperforms other state-of-

the-art competitors by 7.13% and 3.41% in terms of Acc

and AUC, while the LogLoss decreases by 12.7%. The re-

sults in Table 4 throw light on the admirably performance

of our method under extreme scene variation.

1.2. Visualizations

Attention Maps Visualization. To further understand

the attention maps learning mechanism of our proposed

SFGD framework, in an intuitive fashion, we visualize the

overall attention maps and multiscale feature maps from dif-

ferent layers (from low level to high level) of the MDAML

module. As illustrated in Fig 3, it implicates an apparent

trend that the spatial attention maps are well-separated and

exhibits the feature response in independent regions with

distinct semantic representations, e.g., eyes, mouth and con-

tour. To explain, this intriguing result benefits from the Re-

gional Independence Loss (RIL) which pulls the identical

Methods Acc AUC LogLoss

Xception [2] 79.35 89.50 0.492

Ef-b4 [12] 76.45 89.98 0.524

RFM [16] 80.83 89.75 0.581

Add-Net [18] 78.71 89.85 0.507

F3-Net [9] 76.17 88.39 0.520

MADD [17] 76.81 90.32 0.529

RECCE [1] 81.20 91.33 0.434

Ours (SFDG) 86.99 94.44 0.379

Table 4. Experiment results of intra-testing on the DFDC [3]

benchmark dataset. Here, smaller logloss represents a better per-

formance. The bold indicates the best in each column.

attention maps close to feature center while repelling differ-

ent attention map centers scattered.

Further, we investigate the effectiveness of our tailored

MDAML module and show the visualization results on

FF++ and WildDeepfake datasets as illustrated in Fig 1 and

Fig 2, respectively. From the figure, we observe that dif-

ferent scales of feature maps concentrate on different acti-

vated intensities. To be more specific, the large scale feature

maps with high-resolution representations embrace richer

and global manipulated traces, while the small scales with

low-resolution representations provide focus to more local-



Figure 1. The visualization results of multiscale feature maps in MDAML module on FaceForensics++ [10] dataset. The first row represents

the input images with specifical manipulated patterns. The second and third rows show the feature maps at different scales. We merely

show one channel of feature maps.

ized and salient features around facial landmarks. The pri-

mary object of the MDAML module is to aggregate these

multiscale feature maps through hierarchical pyramid net-

work, which can get rid of the disturbance of noise and as-

sist our model to draw attention to the essential discrepancy

between real and counterfeit images.

Feature Distribution Visualization. In this section, we

further verify the discriminative ability of our proposed

SFDG framework. We therefore visualize the learned fea-

ture distribution of the baseline model [12], MADD [17]

and our approach on FF++ (LQ and HQ) and WildDeepfake

dataset utilizing the t-SNE technique. As shown in Fig 4,

we randomly sample 5000 images from the FF++ (LQ) and

FF++ (HQ) dataset, and 3000 from WildDeepfake. The

visualized features of our method are extracted from the

layer right before the first fully-connected layer. Observing

from the visualization results that compared with the base-

line and MADD methods, our approach embeds the same

class samples into a relatively compact feature space. This

phenomenon tests the validity of the effectiveness of our ap-

proach that adequately capture the essential discrepancy be-

tween genuine and manipulated faces in spatial-frequency

domains through dynamic graph learning, thus improving

the generalization ability of our method.
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Figure 2. The visualization results of multiscale feature maps in MDAML module on WildDeepfake [18] dataset. The first row represents

the input images with specifical manipulated patterns. The second and third rows show the feature maps at different scales. We merely

show one channel of feature maps.
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Figure 3. The visualization of overall spatial attention maps trained on FaceForensics++ [10] datasets. The different channels of multiple

attention maps are shown in each column.



Figure 4. The t-SNE embedding visualization of the feature distribution in the EfficientNet-b4 [12], MADD [17] and SFGD methods. The

first two rows display the visualized results on FF++ (HQ) and FF++ (LQ) datasets [10] respectively. The last row shows the visualization

on WildDeepfake [18] database. Best viewed in color.
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