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In this supplementary material, we present a comprehen-
sive analysis of our proposed method along with additional
experimental results and discussion.

Firstly, in Sec. A, we provide a detailed ablation study of
the proposed DAM and SAM modules to demonstrate their
effectiveness in improving the segmentation performance.

Secondly, we investigate the effectiveness of applying
the DIGA method on state-of-the-art models in Sec. B. The
results show that DIGA can further improve the segmenta-
tion performance of these models.

Furthermore, we conduct a sensitivity analysis of the hy-
perparameters in Sec. C to provide insights into the impact
of these parameters on the segmentation performance.

Lastly, we discuss the potential of incorporating trans-
formers into the proposed method and present an additional
baseline for comparison in Sec. D. This section also high-
lights potential future directions for research in this field.

A. Further Ablation Studies of DAM and SAM
Module

In this section, we present an in-depth ablation study
of the DAM and SAM modules. We begin by examining
the necessity of the DAM module for the SAM module.
Specifically, we compare the performance of DAM+SAM
with that of SAM only. The results, as presented in Tab.
4, demonstrate that DAM+SAM consistently outperforms
SAM only on all target domains, with an average improve-
ment of 2.47%. These findings suggest that the DAM mod-
ule can consistently enhance the performance of the SAM
module. Next, we investigate whether SAM contributes to
the performance of DAM. While the quantitative analysis
is reported in the experiment section of the main paper,
we provide a qualitative illustration in Fig. 6. This figure
depicts two people riding on the same bicycle, which is a
common occurrence in the real world, but not present in the
synthetic source GTA5. From the figure, it is apparent that
DAM alone struggles to distinguish between the people and
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the bicycles. However, with the incorporation of SAM, the
results are significantly improved, providing evidence for
the effectiveness of the SAM module.

Table 4. SAM performance with or without DAM. Source domain:
GTA5. ↑: with improvement.

Method CS BDD MA IDD CC Avg.

SAM w/o DAM 42.79 33.40 40.80 42.28 30.70 37.99
SAM w/ DAM 45.81 35.78 44.25 42.73 33.72 40.46↑

B. Applying SAM on State-of-the-art Methods
In this section, we explore the potential of integrating

the SAM module with other state-of-the-art TTDA meth-
ods. The SAM module’s plug-in design makes it a seamless
addition to existing methods, as it can use the model’s fea-
ture to predict the confidence of its output and enhance the
prediction accordingly. By combining the predictions of the
model and the SAM module, the final prediction can be ob-
tained.

To assess the compatibility of DIGA with other methods,
we present the adaptation results of IN, DUA, and SITA
with and without SAM modules from GTA5 to five target
domains in Table 7. Our results demonstrate that the use of
SAM modules can significantly improve the performance
of IN, DUA, and SITA, with an average improvement of
4.61%, 2.17%, and 3.31%, respectively. Although there are
some exceptions, such as the BDD domain, where applying
the SAM module does not lead to a performance improve-
ment. We speculate that this could be due to less significant
semantic shifts between GTA and BDD compared to other
domains.

C. Sensitivity Analysis of Hyperparameters
The sensitivity of hyperparameters is a critical issue in

the training of deep neural networks, where small variations
in hyperparameters can significantly impact the model’s
performance. This issue is exacerbated in TTDA since hy-
perparameter tuning is not possible during the adaptation
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Figure 6. An illustration example of the effectiveness of SAM. GTA5→IDD.
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Figure 7. Parameter sensitivity analysis. From left to right, λBN , λP , λF . Source: GTA5.

Table 5. Applying SAM on state-of-the-art methods. Source do-
main: GTA5. ↑: with improvement.

Method CS BDD MA IDD CC Avg.

IN 34.25 29.64 35.01 29.80 23.87 30.51
IN+SAM 40.08 28.66 37.66 38.04 31.14 35.12↑

DUA 37.79 31.76 40.26 34.75 26.32 34.18
DUA+SAM 42.25 28.66 39.17 41.10 30.55 36.35↑

SITA 40.64 32.94 37.80 35.66 28.19 35.26
SITA+SAM 42.99 32.91 41.02 42.43 33.49 38.57↑

process. As a result, unstable hyperparameters can lead
to unpredictable and undesirable adaptation performance,
which is not desirable in practical applications.

To address this issue, we conduct a series of experiments
to analyze the sensitivity of TTDA to hyperparameters in
the context of segmentation. We focus on the most sig-
nificant and distinctive hyperparameters of our proposed
Domain-Invariant Graph-based Adaptation (DIGA) model:
λBN in the domain adaptation module (DAM), λP in the se-
mantic adaptation module (SAM), and λF in the final merg-
ing process.

The λBN hyperparameter balances the trade-off between
instance-level and historical statistics in the batch normal-
ization layer, while the λP hyperparameter balances the
trade-off between instance-level and historical statistics in
the prediction layer. The λF hyperparameter balances
the trade-off between direct prediction and prototype-based
prediction in the final merging process.

To evaluate the impact of these hyperparameters on
TTDA performance, we conduct experiments on five dif-
ferent target domains, and we vary the values of each hy-
perparameter between 0 and 1 with a step size of 0.1. Fig-

ure 7 shows the performance of TTDA with different hy-
perparameters. We observe that the optimal values of λBN ,
λP , and λF consistently cluster around 0.8 for all target do-
mains, indicating that these hyperparameters are not highly
sensitive to the target domain.

Moreover, we find that setting the hyperparameters to 0.8
consistently achieves better performance than setting them
to 0 or 1 across almost all datasets. This result suggests that
incorporating both instance-level and historical statistics in
the DAM and SAM modules can improve performance and
that direct prediction and prototype-based prediction can
complement each other in the final merging process. Im-
portantly, we use the same hyperparameters for all source
domains, rather than selecting domain-specific hyperparam-
eters, which demonstrates the robustness of our method.

D. Discussions

Transformers. Transformers have become increasingly
popular in computer vision tasks, such as image classifi-
cation [1] and object detection [5]. Recently, studies have
shown that transformers can achieve state-of-the-art perfor-
mance on semantic segmentation tasks [9]. To facilitate fu-
ture comparisons, we provide the basic results of the Seg-
former model [9] in Table 6. The results show that Seg-
former achieves an average performance of 35.90%, and
applying a spatial attention module (SAM) can further im-
prove its performance to 41.62%.

Unfortunately, the design of the DAM module in DIGA
cannot be directly applied to transformer-based models due
to the absence of batch normalization (BN) layers. Con-
sequently, SAM can only work on the shifted features af-
ter being processed by the networks. This limitation also



applies to many other TTDA methods that rely on BN lay-
ers [3, 4]. Therefore, it is reasonable to speculate that de-
signing a transformer-appliable DAM could further improve
the performance of the model, which may be a topic for fu-
ture work.

Table 6. The average performance of source model trained with
GTA5 on five target domains. ↑: with improvement.

Method Average mIoU.

Segformer 35.90
Segformer+DIGA 41.62↑

Additional baselines. We present additional baselines
in Table 7 for comparison purposes. It is worth noting that
this comparison is not entirely fair, as DA methods have
access to the source domain during the training process,
while the test is conducted after adaptation on the valida-
tion set. Nevertheless, our proposed method achieves su-
perior results when compared to AdaptSeg and AdvEnt by
3.4% and 0.3%, respectively, even without accessing the
source domain. On the other hand, more recent DA works
such as ProDA and DACS demonstrate better performance
than TTDA methods, with top-2 performances of 57.5%
(ProDA) and 52.1% (DACS), respectively. This is expected
since the test-time adaptation is conducted under restricted
conditions. The large performance gap suggests that there
is still room for further exploration in the adaptation space,
leaving an opportunity for future work.

Table 7. Additional baselines for future studies. Source domain:
GTA5. Target domain: Cityscapes.

Method Setting Published mIoU.

DACS [6] DA WACV’2021 52.1
ProDA [2] DA CVPR’2021 57.5
AdaptSeg [7] DA CVPR’2018 42.4
AdvEnt [8] DA CVPR’2019 45.5

Ours TTDA - 45.8
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