
Supplementary Materials for FEND: A Future Enhanced Distribution-Aware
Contrastive Learning Framework For Long-tail Trajectory Prediction

Yuning Wang 1*, Pu Zhang 2*, Lei Bai 3, Jianru Xue 1†

1 Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, China
2 DiDi Chuxing, China

3 Shanghai AI Laboratory, China
wangyn@stu.xjtu.edu.cn, {zhangpu94,baisanshi}@gmail.com, jrxue@mails.xjtu.edu.cn

1. Visualization Of Different Prototypes

In our framework FEND, we first do trajectory cluster-
ing to get different trajectory prototypes. To make the tra-
jectory clustering more focused on the motion patterns of
trajectories, we normalize the trajectories before clustering.
Specifically, we translate the final observed trajectory points
to the origin of the coordinate system. After that, we rotate
the trajectories to make the velocity at the last observed time
along the coordinate axis. Besides, we use the same trajec-
tory normalization as Trajectron++ [4], which make the dis-
tribution of trajectory lengths the same across scenes. Af-
ter the normalization of Trajectron++, the lengths of history
trajectories will be in [0, 2] and shorter than future trajecto-
ries.

In Fig. 1 we demonstrate different head trajectory proto-
type clusters on ETH-UCY. And in Fig. 2 we demonstrate
different tail trajectory prototype clusters. We can see that
the tail trajectory prototypes are with various motion pat-
terns and are hard to predict.

Figure 3 shows the distribution of mean FDEs of the
clusters for univ dataset. We can see that the samples are
grouped into clusters by their hardness, generating some
easy clusters with mean FDEs like 0.1 and some hard clus-
ters with mean FDEs like 0.9 and 2.0.

2 0 2 4 6 8 10 12 14
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

(a)

2 0 2 4 6 8 10 12 14
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

(b)

2 0 2 4 6 8 10 12 14
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

(c)

Figure 1. Trajectories in different head prototype clusters.

2 0 2 4 6 8 10 12 14
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

(a)

2 0 2 4 6 8 10 12 14
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

(b)

2 0 2 4 6 8 10 12 14
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

(c)

2 0 2 4 6 8 10 12 14
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

(d)

2 0 2 4 6 8 10 12 14
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

(e)

2 0 2 4 6 8 10 12 14
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

(f)

2 0 2 4 6 8 10 12 14
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

(g)

2 0 2 4 6 8 10 12 14
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

(h)

2 0 2 4 6 8 10 12 14
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

(i)

Figure 2. Trajectories in different tail prototype clusters.

2. Preliminary Implement Results On Another
Baseline.

In Tab. 1 we show a preliminary implementation of our
method on another backbone: Social-STGCNN [3]. The re-
sults in Tab. 1 are calculated by our implementation based
on the public code of [3], and the results are calculated by
taking an average of five individual runs considering the
sampling randomness. We can see from Tab. 1 that our
method can significantly improve the performances on all
tailed samples, while the averaged performances are only
very slightly affected. Those results show the generaliza-
tion ability of our method. Doing contrastive learning will
probably break the neighborhood correlations slightly, and
we will further work on this problem in the future.

1



Top 1% Top 2% Top 3% Top 4% Top 5% All

Social-STGCNN [3] 1.90/3.97 1.61/3.43 1.45/3.14 1.33/2.89 1.25/2.72 0.45/0.76
Social-STGCNN+FEND 1.73/3.69 1.49/3.23 1.35/2.96 1.27/2.76 1.20/2.59 0.46/0.78

Table 1. Preliminary implement results of our FEND module on another baseline: Social-STGCNN. Results are in format of (mi-
nADE/minFDE) in meters. Bold numbers are the best results of each column.

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
Cluster mean FDEs

0

100

200

300

400

500

600

700

Nu
m

be
rs

 o
f s

am
pl

es

Figure 3. Distribution of the mean FDEs (from Traj++ EWTA)
of different clusters. When two clusters have very similar FDEs,
their bars will overlap.

(a) (b) (c)

(d) (e) (f)

Figure 4. Qualitative visualizations of our model versus Traj++
EWTA and Traj++ EWTA + contrastive .

3. More Visualization Results

In Fig. 4 we demonstrate more qualitative comparisons
of our method in ETH-UCY dataset with Traj++ EWTA [2]
and Traj++ EWTA + contrastive [2]. We can see that in all
those challenging scenarios our method outperforms those
two methods.

θ Top 1% Top 3% Top 5% All

0 0.84/2.12 0.62/1.48 0.53/1.21 0.17/0.32
0.2 0.84/2.13 0.61/1.46 0.52/1.19 0.17/0.32
0.5 0.91/2.32 0.64/1.58 0.54/1.27 0.17/0.32

Table 2. Study on the parameter sensitivity of the threshold θ .Re-
sults are in the format of (minADE/minFDE) in meters.

4. More Parameter Sensitivity Study

Table 2 shows the parameter study of the head sample fil-
ter threshold θ to apply PCL auxiliary loss. We can see that
adding θ = 0.2 outperforms the model without a thresh-
old, but filtering out too much samples will harm the per-
formance of the tail samples, as θ = 0.5 shows.

5. Performances On Kalman Filter Scores

Our method can also perform decently on another hard-
ness score: Kalman Filter prediction errors. Table 3 con-
tains the results for the Kalman scores versus [2], which
is the state-of-the-art long-tail trajectory prediction method.
T++E means Traj++ EWTA. Note that the Top 1% hard
samples selected by Kalman prediction scores have a lower
mean FDE than the Top 2 − 5% samples, indicating that
the Kalman errors can not reveal the sample hardness with
respect to the neural network predictor.

6. More Ablation

In Tab. 4 we show more ablation results of our method
with regard to the hypernetwork. We can see that using
both hypernetwork and PCL can help with improving per-
formances on tail samples.

7. Baseline Implement Details

We do LDAM [1] experiments using the suggested set-
ting in [2]. The dataset is divided into 13 classes according
to Kalman errors. Then an MLP classification head is added
after the trajectory embeddings to predict the class divisions
as an auxiliary task. The main hyperparameters are s in
LDAM loss and w for task loss reweighing. We tried differ-
ent values of the main hyperparameters, and finally use the
s = 1, w = 1 setting, the same as the suggestion in [2].



Top 1% Top 2% Top 3% Top 4% Top 5% All

T++E contrastive [2] 0.38/0.71 0.48/1.03 0.46/1.03 0.45/1.00 0.42/0.90 0.17/0.32
T++E FEND 0.38/0.74 0.43/0.92 0.40/0.85 0.39/0.82 0.37/0.76 0.17/0.32

Table 3. Prediction errors on hard tail samples selected by Kalman prediction errors on ETH-UCY. Results are in the format of (mi-
nADE/minFDE) in meters. Bold numbers mean the best results of each column.

Top 1% Top 2% Top 3% Top 4% Top 5% All

Traj++ EWTA [2] 0.98/2.54 0.79/2.07 0.71/1.81 0.65/1.63 0.60/1.50 0.17/0.32
Traj++ EWTA + hypernetwork 0.97/2.46 0.78/2.00 0.69/1.72 0.62/1.54 0.57/1.40 0.17/0.33
Traj++ EWTA + hypernetwork +PCL 0.90/2.28 0.72/1.87 0.65/1.61 0.58/1.43 0.54/1.30 0.17/0.32
Traj++ EWTA + FEND 0.84/2.13 0.68/1.68 0.61/1.46 0.56/1.30 0.52/1.19 0.17/0.32

Table 4. Ablation studies of using the hypernetwork. Results are in format of (minADE/minFDE) in meters. Bold numbers are the best
results of each column.

Top 1% Top 2% Top 3% All

T++ [4] 8.23 6.37 5.52 -1.12
T++ FEND 7.97 6.23 5.31 -1.12

Table 5. Full FDE NLL results on Trajectron++ on ETH-UCY.
Bold numbers are the best results of each column.

Top 1% Top 2% Top 3% All

T [2] 1.85/4.63 1.44/3.69 1.23/3.15 0.19/0.34
T+contrastive 1.45/3.27 1.11/2.54 0.95/2.17 0.19/0.32
T w/o RS+FEND 1.24/2.48 0.94/1.88 0.81/1.63 0.18/0.27

Table 6. Results of 6 timesteps prediction on Nuscenes. Results
are in format of (minADE/minFDE). Bold numbers are the best
results of each column.

8. Performances On Another Metric
Except the minADE/FDE, our method is a plug-in mod-

ule and can be evaluated with any better baselines and met-
rics. We plug our module into a probabilistic method : Tra-
jectron++ (T++) [4], and evaluate using full KDE NLL. The
result is in Table 5.

9. Performances On Different Prediction Time
Periods on Nuscenes

We found out that the Trajectron++ EWTA model is
trained with 6 as the prediction horizon but tested with 8
as the prediction horizon. We also provide the results for
testing with 6 future timesteps in Tab. 6. T means Trajec-
tron++ EWTA.

References
[1] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga,

and Tengyu Ma. Learning imbalanced datasets with label-

distribution-aware margin loss. Advances in neural informa-
tion processing systems, 32, 2019. 2

[2] Osama Makansi, Özgün Çiçek, Yassine Marrakchi, and
Thomas Brox. On exposing the challenging long tail in future
prediction of traffic actors. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 13147–
13157, 2021. 2, 3

[3] Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and
Christian Claudel. Social-stgcnn: A social spatio-temporal
graph convolutional neural network for human trajectory pre-
diction. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 14424–14432,
2020. 1, 2

[4] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and
Marco Pavone. Trajectron++: Dynamically-feasible trajectory
forecasting with heterogeneous data. In European Conference
on Computer Vision, pages 683–700. Springer, 2020. 1, 3


	. Visualization Of Different Prototypes
	. Preliminary Implement Results On Another Baseline. 
	. More Visualization Results
	. More Parameter Sensitivity Study
	. Performances On Kalman Filter Scores
	. More Ablation
	. Baseline Implement Details
	. Performances On Another Metric
	. Performances On Different Prediction Time Periods on Nuscenes

