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1 Derivation of the EMD Upper Bound
In this work, the EMD can be written as [2]:

EMD(VLP,LP) = } EMD(vi, wi) = Y inf El|vi — wy|,
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which is the same as Eq. 10 in the manuscript, with v ~ A (¥, X*) and

wi, ~ N (ukf, XE). According to [3], if we define:
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then wy, ~ N (k. X%). With Eq. 2, we have
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and the expectation of DF is

E(D*) = pl — pas;.
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For simplicity, suppose XF = ngI and XF = UVQVA-,I. Based on Jensen’s in-
equality [1], we have:
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Then EMD(VLP,LP) can be derived as:

EMD(VLP,LP) =) " inf E||vy — w||
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Finally, based on Eq. 8, we define the loss function as:
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2 Geometric Explanation of Cross-Modal Distribution
Alignment

To give an intuitive analysis, we regard the feature space as 2-dimensional. In
Fig. 1, z;; is the feature of the current input image, wy, is the text feature
of clasb Yi, Vy, is the current vision-language prototype of class y;, and 2 i =
(1 - a)z;; + av,, is the image feature calibrated (aligned) by v,,. The circle
with its center w,, in Fig. 1 has the radius |w,, — 2z; ;|. Since the target of the
loss function Lgmp is to align vy, and w,,, the prototype v,, is usually closer
to wy, than z;; after some iterations. It is easy to prove that as long as v,
is inside the circle, z, ;,; must be closer to wy than z; ;, meaning that after the
alignment, the image feature z; ; becomes z; ; that is closer to the text feature
Wy, -
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Fig. 1. Geometric explanation of why (1 — a)z; ; + avy, in Eq. 12 in the manuscript

helps the alignment.

3 Datasets

The details of the 11 downstream datasets are shown in Table 1. The accuracy
metric of each dataset follows CLIP [4].

Dataset Classes Train Size Test Size Accuracy Metric
ImageNet 1000 1281167 50000 accuracy
CIFAR-10 10 50000 10000 accuracy
CIFAR-100 100 50000 10000 accuracy

STL-10 10 1000 8000 accuracy
Food-101 101 75750 25250 accuracy

Stanford Cars 196 8144 8041 accuracy
FGVC Aircraft 100 6667 3333 mean per-class
Oxford-IIIT Pets 37 3680 3669  mean per-class
Caltech-101 102 3060 6086  mean per-class

DTD 47 3760 1880 accuracy

UCF-101 101 9537 1794 accuracy

Table 1. Datasets in our experiments.

4 Results

Table 2 shows the detailed results of 5 methods with the same pre-trained CLIP
model (vision encoder=ResNet50) on the 11 datasets. In addition to the methods
in the manuscript, Linear Probe CLIP is also used for the evaluation. Our SADA

outperforms the others.
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Method #Shots <t — &} &} ) = 0 =} A »n |} =

1 35.1 22.1 44.3 443 30.2 314 80.6 41.2 29.8 243 182 13.0
2 44.9 319 53.5 68.7 40.5 45.1 86.9 53.8 41.4 36.8 26.6 17.9
54.9 414 622 79.0 56.4 56.8 92.2 61.7 51.9 49.5 35.6 23.9
62.6 49.4 70.1 84.3 67.5 67.1 94.3 67.2 59.0 61.2 43.6 29.4
68.2 55.9 73.8 87.3 75.1 73.7 95.0 72.8 64.3 70.0 50.5 36.0
62.4 534 71.8 83.6 86.5 77.5 94.1 60.0 44.1 54.0 41.3 17.7
63.8 55.7 73.2 84.2 86.7 764 76.4 64.2 484 57.0 424 19.9
66.1 57.9 754 855 87.2 77.0 949 658 53.4 61.4 457 22.7
68.6 60.5 76.7 87.4 87.8 77.8 953 70.0 58.7 65.5 49.7 26.3
71.3 62.3 784 89.6 88.4 79.3 95.6 74.6 65.0 70.5 53.3 30.1
64.0 58.3 73.6 86.1 86.8 77.9 94.3 64.1 453 54.3 43.2 19.8
65.5 59.0 75.1 86.7 87.0 783 94.8 67.1 50.3 57.5 44.1 22.5
67.5 59.7 76.5 88.5 87.3 785 952 70.0 56.0 61.8 46.3 25.3
69.6 60.7 77.5 88.7 87.9 78.6 954 73.7 61.0 659 49.8 30.2
72.2 61.3 79.1 90.1 885 79.3 95.6 76.7 65.8 71.0 52.9 38.0
65.9 61.3 752 89.7 87.3 77.7 944 64.8 50.3 58.4 439 21.7
67.0 61.7 759 89.9 87.9 77.8 94.5 67.5 52.9 61.5 44.3 23.1
69.0 62.5 77.3 91.5 883 78 94.6 T71.2 58.0 644 46.9 26.2
71.2 64 777 92 89.1 784 94.8 748 61.7 68.8 48.4 338
73.4 65.5 785 93.1 89.3 789 949 775 66.2 756 49.5 38.7
66.8 61.8 74.6 86.7 88.2 80.8 95.1 66.4 50.9 60.1 47.8 22.2
68.4 62.3 76.4 87.1 88.4 80.6 95.3 68.7 56.2 63.7 49.4 24.8
70.3 63.6 78.3 88.7 89.0 80.8 95.7 715 60.0 67.9 51.7 27.5
72.3 64.7 79.6 89.8 89.4 81.7 96.1 T4.7 64.0 72.1 54.3 31.5
74.3 65.3 80.9 90.0 90.0 824 96.3 77.3 68.7 755 57.0 36.6
68.7 63.9 78.0 90.6 89.2 81.9 95.8 69.2 51.8 61.7 49.3 23.9
69.9 64.3 78.7 91.4 89.4 82.1 96.0 69.9 57.7 64.5 50.0 25.3
71.9 65.5 80.0 93.7 89.5 82.5 96.2 72.7 61.5 68.4 52.6 28.3
74.1 66.9 80.9 93.2 89.9 82.7 96.3 75.9 65.0 73.6 55.0 31.9
76.2 67.7 81.8 94.5 90.7 83.1 96.5 78.5 69.9 76.2 57.9 37.2
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Table 2. Accuracies (%) by 5 methods. #Shots: the number of training samples per
class.
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