Flow supervision for Deformable NeRF
Supplementary Material

A. Implementation details

A.1. SE(3) transformation in normalized device co-
ordinate

For unbounded frontal scenes in the DVS dataset [7],
normalized device coordinate (NDC) [3] is required to
squeeze unbounded 3D space into a bounded one with re-
spect to the depth direction. To perform SE(3) transfor-
mation of points with the NDC coordinates, naive imple-
mentation would be first convert the NDC coordinates to
Euclidean coordinates, apply the SE(3) transformation, and
then convert it back to the NDC coordinates. However do-
ing so may run into numerical instability issue for points
in long distance. Alternatively we derived a formula to di-
rectly apply SE(3) transformation in the NDC coordinates.
For any NDC coordinates (x, y, z), its corresponding NDC
coordinates (2',y’, z’) after applying the SE(3) transforma-
tion with rotation R € SO(3) and translation t € R3 is
calculated as follow:
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where f;, f,, H, W, n are the focal lengths, image sizes and
near plane distance as in the definition of NDC coordinates.
The above formulation avoids the hassle of dealing with
points at infinity in the Euclidean coordinates.

A.2. Efficient implementation of equation (5)

To be able to backpropagate through equation (5) and
make the computation tractable for evaluating on 100k+
points per iteration, we made the following implementation
design choices.

First, we choose to implement a 2nd-order differentiable
quaternion-based operator using CUDA. This is 100x faster
than implementation with native pytorch operators as in Py-
Torch3D [5], and 5x faster than matrix multiplication based
implementation. We note that LieTorch library [6] also

provides fast implementation of SE(3) transformation and
computes gradients in the tangent space. However it does
not support 2nd-order derivatives which is required for op-
timization with respect to the velocities estimated by equa-
tion (5).

For calculating the 3 x 3 matrix inverse of the Jacobian
matrices, me choose to implement an analytical solution of
the matrix inverse with CUDA, which is 100x faster than
pytorch’s generic matrix inverse routine when dealing with
100k 3 x 3 small matrices. We use the following equation
to calculate the derivative,
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where d;; is a binary matrix whose (i, j)th entry is the el-

ement with value of 1. In our CUDA implementation, we
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be significantly faster than the generic matrix inverse oper-
ators from pytorch.

B. Comparison to directly inverting the back-
ward deformation field.

In Fig. 1, we compare our method against two baselines
which directly invert the backward deformation field. The
experiment setup is to fit a video with se(2) motions as de-
scribed in Figure 4 of the main paper. The optimization ob-
jective is to minimize the combination of photometric loss
and optical flow loss.

The first baseline (3rd column) has a separate MLP
which represents the forward deformation field w.—,. It
has the same architecture as the backward deformation field
we«. Then the optical flow between frame ¢ and ¢ + At at
pixel p is estimated as 0yt At = We (Were (P, t), ¢ +
At) — p. As shown in the 3rd column of the following fig-
ure, this baseline is not able to reconstruct the input video
with high fidelity (PSNR=24.8). This is due to there being
no explicit gaurantee that the forward and backward defor-
mation fields are cyclic consistent.

The 2nd baseline applies normalizing flow as in Lei &
Daniilidis [!] The deformation field is modeled by Real-
NVP, which is a bijective mapping with analytic inverse.
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Figure 1. Compare flow supervision using different deformation
representation. Our method (2nd column) outperforms baselines
using separate forward & backward deformation field (3rd col-
umn) and bijective normalizing flow (4th column).

We find that due to the network architecture restrictions,
Real-NVP is not able to perfectly fit the motions (see dis-
tortion of image patches in the 4th column), even when it
has significantly more layers than our method (12 vs 4).

In comparison, our method achieves the highest PSNR
which indicates its effectiveness against directly inverting
the backward deformation field. Finally, we note that it
may be possible to make the baselines stronger by carefully
tuning loss functions or network architectures, however the
main strength of our method is its generality without the
need for introducing additional modules or tuning.

C. Other optical flow rendering/loss alterna-
tives

In our preliminary investigation, we also experimented
different ways of rendering the optical flow from 3D scene
flows and evaluating the flow loss. All of the following al-
ternatives are inferior to the one we described in the main
paper, and we have recorded them here for reference.

¢ The first alternative is instead of evaluating scene flows
for all sampled points along the ray and then weighted
averaging them, we only evaluate scene flows for a sin-
gle point on the estimated visible surface. More specif-
ically, we first synthesize the depth as in NeRFs [2—4]
by weighted averaging depth of sampled points along
the ray. This gives an estimation of a position p(¢) on
the visible surface. Then the next position p(t + At)
is estimated by equation (7).

* We still evaluate scene flows for all the points along the
ray. But instead of aggregate them together to form a
single optical flow, we project all scene flows to 2D
flows, and directly evaluate optical flow loss by com-
paring them to the input optical flow. To account for
occlusions, we weighted the loss by the weights from
the volumetric rendering equation. More specifically,
given the projected 2D flows o; € R? for each point i
along the ray, we evaluate the optical flow loss as fol-

low:
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where w; denotes the weights from the volumetric ren-
dering and Ojypy; € R2 is the input optical flow.

In our current experiment, we found both above ap-
proaches are inferior to the one we used in the main pa-
per. Sometimes they resulted in training instability or float-
ing surfaces. A deeper understanding of why these two
approaches do not work may motivate more efficient ap-
proaches of enforcing the flow loss.
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