
Appendix of Generalist: Decoupling Natural and Robust Generalization

Hongjun Wang1* Yisen Wang1,2†

1 National Key Lab of General Artificial Intelligence
School of Intelligence Science and Technology, Peking University

2 Institute for Artificial Intelligence, Peking University

A. Additional Experiments
A.1. Detailed Configurations

All images are normalized into [0, 1]. We train ResNet-18 using SGD with 0.9 momentum for 120 epochs (200 epochs for
CIFAR-100) and the weight decay factor is set to 3.5e−3 for ResNet-18 and 7e−4 for WRN-32-10. We use the piecewise
linear learning rate strategy for performing weight averaging in base-learners. For the base-learner of AT, the initial learning
rate for ResNet-18 is set to 0.01 and 0.1 for WRN-32-10 till Epoch 40 and then linearly reduced by 10 at Epoch 60 and 120,
respectively. The magnitude of maximum perturbation at each pixel is ε = 8/255 with step size κ = 2/255 and the PGD
steps number in the inner maximization is 10. For the base-learner of NT, we fix the initial learning rate as 0.1 and the weight
decay is 5e−4 for both ResNet-18 and WRN-32-10.

A.2. Experiments on MNIST/SVHN

We conducted experiments on MNIST (ε = 0.3) and SVHN using ResNet-18 with the same setup in Sec. A.1. We ran 5
individual trials and results with standard deviations are shown in Table 2. Our Generalist still achieves the best performance.

Table 2. Comparison of our algorithm with different training methods using ResNet-18 on MNIST and SVHN. The maximum perturbation is ε = 8/255.
The best checkpoint is selected based on the tradeoff between clean accuracy and robust accuracy against PGD20 on the test set. We highlight the top two
results on each task. Average accuracy rates (in %) have shown that the proposed Generalist method greatly mitigates the tradeoff of the model.

MNIST SVHN
Methods NAT PGD20 AA NAT PGD20 AA

TRADES 99.07
±0.13

94.45
±0.07

92.17
±0.21

93.1
±0.25

55.38
±0.71

45.52
±0.37

FAT 99.18
±0.03

93.54
±0.1

90.04
±0.68

93.87
±0.4

53.61
±0.88

40.92
±0.29

Generalist 99.24
±0.07

96.14
±0.15

92.3
±0.3

94.11
±0.27

55.29
±0.23

45.41
±0.26

A.3. Experiments on CIFAR-100

To further demonstrate our proposed Generalist achieves a better tradeoff between accuracy and robustness, we also conduct
experiments on CIFAR-100 datasets. Here we still use ResNet-18 as the backbone model with the same configurations as
claimed in Sec. A.1. We report the results of natural accuracy and several advanced adversarial attack methods in Table
3. Note that we do not design a specialized strategy for Generalist on CIFAR-100 but Generalist still achieves a gratifying
tradeoff, so it still has the potential to perform better.

*Work was done as an internship at Peking University. Now, he is a Ph.D. student at the University of Hong Kong.
†Corresponding Author: Yisen Wang (yisen.wang@pku.edu.cn)

1



Table 3. Comparison of our algorithm with different training methods using ResNet-18 on CIFAR-100. The maximum perturbation is
ε = 8/255. The best checkpoint is selected based on the tradeoff between clean accuracy and robust accuracy against PGD20 on the test
set. We highlight the top two results on each task. Average accuracy rates (in %) have shown that the proposed Generalist method greatly
mitigates the tradeoff of the model.

Method NAT PGD20 PGD100 MIM CW APGDce APGDdlr APGDt FATt Square AA
NT 65.74 0.02 0.01 0.02 0.01 0.00 0.00 0.00 0.07 0.37 0.00
AT (β = 1) 60.10 28.22 28.27 28.31 24.87 26.63 24.13 21.98 23.91 27.93 23.87
AT (β = 1/2) 60.84 22.64 22.61 23.86 22.28 20.66 21.67 19.2 20.09 25.36 19.17
TRADES (λ = 6) 59.93 29.90 29.88 29.55 26.14 27.93 25.43 24.72 25.16 30.03 23.72
TRADES (λ = 1) 60.18 28.93 28.91 29.12 25.79 27.07 25.00 23.65 24.31 28.76 23.22
FAT 61.71 22.93 22.87 22.64 23.45 24.78 24.91 20.56 23.16 26.37 20.01
IAT 57.04 21.40 21.39 22.37 19.18 19.63 18.92 15.50 16.63 23.26 15.50
RST 60.30 23.56 23.61 23.71 22.40 24.69 24.18 21.66 23.82 27.05 21.18
Generalist 62.97 29.48 29.49 30.35 27.77 27.45 27.42 24.04 25.54 31.41 23.96

A.4. Computational Cost and Tradeoff Comparison of Generalist

We compute the actual training time of TRADES and Generalist (serial/parallel version) using ResNet-18 on RTX 3090
GPU in Table 4. We also report the standard deviations over 5 runs to show the sensitivity of Generalist. Neither version of
Generalist is slower than TRADES. Generalist does perform both NT and naive AT, but the cost of NT is negligible so the
overhead (NT+AT) is smaller than TRADES.

Besides, Table 4 delivers another important message. For the tradeoff between robustness and accuracy, it is hard to obtain
acceptable robustness while maintaining clean accuracy above 89% in the joint training framework (TRADES). For every
percentage point increase in clean accuracy, the robust accuracy will decrease dramatically (e.g. TRADES can meet 89% on
clean accuracy but its robustness against APGD will drop to 30%).

Table 4. Evaluation of time complexity of our algorithm with different training methods using ResNet-18.

Method NAT PGD100 APGD Training
Time (mins)

TRADES 89.91
±0.69

34.25
±0.56

30.20
±0.81 414

Generalist (Serial) 89.11
±0.23

50.12
±0.12

46.12
±0.11 397

Generalist (Parallel) 89.09
±0.34

50.00
±0.44

46.53
±0.3 342

A.5. Influence of Learning Rate

In this part, we also study the influence of the learning rate for different distribution-aware tasks. For simplicity, we set t′, γ
and c as their best options according to the main body of the paper. We search the most grid of learning rate configurations in
the range of 0.1, 0.01, 0.001 for both natural training and adversarial training. Our Generalist achieves its best and second-best
natural accuracy when the learning rate for the clean learner is set to 0.1. And the optimal learning rate for robust accuracy is
0.01. Based on all the observations from Table 5, the learning pace of learners is a little different but the process is compatible.

Table 5. Clean and robust accuracy (%) on CIFAR-10 dataset using ResNet-18 with different learning rates.

NAT AA
NT=0.1, AT=0.01 89.09 46.37
NT=0.1, AT=0.1 90.12 41.86
NT=0.1, AT=0.001 90.45 43.55
NT=0.01, AT=0.01 88.4 48.03
NT=0.01, AT=0.1 88.25 42.98



B. Proofs of Theoretical Results
B.1. Proof of Claim in Section 3.3

Proof. At epoch t, the parameters of the global learner are distributed to the experts and each expert train from this initialization
with c steps by calculating the gradients (e.g. using SGD optimizer). Following [3], we approximate the update performed by
the initialization based on the Taylor expansion:

gt+c = ℓ′
(
θt+c

)
= ℓ′

(
θt
)
+ ℓ′′

(
θt
) (

θt+c − θt
)
+O

(∥∥θt+c − θt
∥∥2)

= ḡt + H̄t
(
θt+c − θt

)
+O

(
τ2
))

= ḡt − τH̄t
t+c∑
j=t

gj +O
(
τ2
)

= ḡt − τH̄t
t+c∑
j=t

ḡj +O
(
τ2
)
.

(1)

Recalling that Zi represents an optimizer that updates the parameter vector at the t-th step: Zi(θ, τ) = θ − τℓ′(θ). For each
base-learner, we approximate the gradient at intervals:

gval =
∂

∂θt ℓ
(
θt+c

)
=

∂

∂θt ℓ
(
Zt+c−1

(
Zt+c−2

(
. . .
(
Zt
(
θt
)))))

= Z ′t (θt
)
· · · Z ′t+c−1 (

θt+c−1
)
ℓ′
(
θt+c

)
=
(
I − τℓ′′

(
θt
))

· · ·
(
I − τℓ′′

(
θt+c−1

))
ℓ′
(
θt+c

)
=

t+c−1∏
j=t

(
I − τℓ′′

(
θj
)) gt+c.

(2)

Replacing ℓ′′
(
θj
)

with H̄j and substituting gt+c for Eq. 1, we expand to leading order:

gval =

t+c−1∏
j=t

(
I − τH̄j

)ḡt+c − τH̄t+c
t+c−1∑
j=t

ḡj

+O
(
τ2
)

=

I − τ

t+c−1∑
j=t

H̄j

ḡt+c − τH̄t+c
t+c−1∑
j=t

ḡj

+O
(
τ2
)

= ḡt+c − τ

t+c−1∑
j=t

H̄j ḡt+c − τH̄t+c
t+c−1∑
j=t

ḡj +O
(
τ2
)

(3)

Therefore, we take the expectation of gval over steps, and obtain:

E [gval] = E
[
ḡt+c

]
− τE

t+c−1∑
j=t

H̄j ḡt+c − H̄t+c
t+c−1∑
j=t

ḡj

+ E
[
O
(
τ2
)]

(4)



Recalling that θg is mixed by θn and θr. For simplicity of exposition, we use p and q to stand for the scalar factors, meaning
θg = pθn + qθr. Ignoring the higher order terms, for each expert initialized by the global learner (e.g. θn), we have:

θn = θg − En [gval] = pθn + qθr − [E
[
ḡt+c
n

]
+ τnE

t+c−1∑
j=t

H̄j ḡt+c
n − H̄t+c

t+c−1∑
j=t

ḡjn

]
= [pθn − E

[
ḡt+c
n

]
] + [qθr − τnE

H̄t+c
t+c−1∑
j=t

ḡjn −
t+c−1∑
j=t

H̄j ḡt+c
n

]
= [pθn −

t+c−1∑
i=t

ḡi] + [qθr − τn

t+c−1∑
i=t

i−1∑
j=1

H̄iḡj ] (for c ≥ 2).

(5)

The first term pushes θn to move forward the minimum of its assigned loss over its data distribution; while the second
one improves generalization by increasing the inner product between gradients of different mini-batches and updating the
parameters from the other task.

B.2. Proof of Theorem 1

Before we present the proof of the Theorem we present useful intermediate results which we require in our proof.

Proposition 1. Consider a sequence of loss functions ℓa : Θ 7→ [0, 1]a∈A drawn i.i.d. from some distribution L is given to an
algorithm that generates a sequence of hypotheses {θa ∈ Θ}a∈A then the following inequality each hold w.p. 1− δ:

1

T

T∑
t=1

E
ℓ∼D

ℓ
(
θt
)
≤ 1

T

T∑
t=1

ℓt
(
θt
)
+

√
2

T
log

1

δ
. (6)

Proof. The proof of the Proposition can be directly derived from the Proposition 1 in [2].

Then we could immediately obtain the below inequality by the symmetric version of the Azuma-Hoeffding inequality [1]

Remark 1.
1

T

T∑
t=1

E
ℓ∼L

ℓ
(
θt
)
≥ 1

T

T∑
t=1

ℓt
(
θt
)
−
√

2

T
log

1

δ
. (7)

Finally, we give the definition of the regret of minimizing any subproblem:

Definition 1. (Subproblem Regret) Consider an algorithm generates the trajectory of states
{
θt ∈ Θ

}
t∈[T ]

, the regret of
such an algorithm on loss function {ℓt}t∈[T ] is:

R̄ =

T∑
t=1

ℓt
(
θt
)
− inf

θ⋆∈Θ

T∑
t=1

ℓt(θ). (8)

Theorem 1. (Restated) Consider an algorithm with regret bound RT that generates the trajectory of states for two base
learners, for any parameter state θ ∈ Θ, given a sequence of convex surrogate evaluation functions ℓ : Θ 7→ [0, 1]a∈A drawn
i.i.d. from some distribution L, the expected error of the global learner θg on both tasks over the test set can be bounded with
probability at least 1− δ:

E
ℓ∼L

ℓ (θg) ≤ E
ℓ∼L

ℓ (θ) +
RT

T
+ 2

√
2

T
log

1

δ
. (9)

Proof. From Theorem 1 and Remark 1, we obtain that

1

T

T∑
t=1

E
ℓ∼L

ℓ
(
θt
)
≤ 1

T

T∑
t=1

ℓt (θ) +
R̄

T
+

√
2

T
log

1

δ
≤ E

ℓ∼L
ℓ (θ) +

R̄

T
+ 2

√
2

T
log

1

δ
. (10)



It is obvious that:

R̄

T
+

√
2

T
log

1

δ
≤ RT

T
+

√
2

T
log

1

δ
and

R̄

T
+ 2

√
2

T
log

1

δ
≤ RT

T
+ 2

√
2

T
log

1

δ
. (11)

So we obtain:

1

T

T∑
t=1

E
ℓ∼L

ℓ
(
θt
)
≤ 1

T

T∑
t=1

ℓt (θ) +
RT

T
+

√
2

T
log

1

δ
≤ E

ℓ∼L
ℓ (θ) +

RT

T
+ 2

√
2

T
log

1

δ
. (12)

Recalling that in Section 3.3, θg can be expressed by the linear combination of θn and θr through t = 1, · · · , T since θg is
aggregateed by EMA, so the above inequality can be further derived by the Jensen’s inequality (convex surrogate functions
could be selected to evaluate the test errors instead of the 0-1 loss):

E
ℓ∼L

ℓ (θg) = E
ℓ∼L

ℓ

(
T∑

t=1

θt

)
≤ 1

T

T∑
t=1

E
ℓ∼L

ℓ
(
θt
)
≤ 1

T

T∑
t=1

ℓt (θ) +
RT

T
+

√
2

T
log

1

δ

≤ E
ℓ∼L

ℓ (θ) +
RT

T
+ 2

√
2

T
log

1

δ
.

(13)

Note that this inequality also holds when applying weight averaging technique to the base-learner, because weight averaging is
still the linear combination of all history states.

References
[1] Kazuoki Azuma. Weighted sums of certain dependent random variables. Tohoku Mathematical Journal, 19:357–367, 1967. 4
[2] Nicolò Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of on-line learning algorithms. IEEE Trans. Inf.

Theory, 50(9):2050–2057, 2004. 4
[3] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. CoRR, abs/1803.02999, 2018. 3


	. Additional Experiments
	. Detailed Configurations
	. Experiments on MNIST/SVHN
	. Experiments on CIFAR-100
	. Computational Cost and Tradeoff Comparison of Generalist
	. Influence of Learning Rate

	. Proofs of Theoretical Results
	. Proof of Claim in Section 3.3
	. Proof of Theorem 1


