
1. Properties of UA Methods

In this section, we present an overview of the key char-
acteristics of uncertainty attribution methods, which are ex-
tended from the attribution methods for deterministic NNs.
We also provide a brief introduction to various existing
gradient-based attribution methods for deterministic NNs,
along with their vanilla extensions. Lastly, we provide a
theoretical demonstration of the essential properties of our
proposed method.

1.1. Essential Properties for Uncertainty Attribu-
tion

Adopted from the survey papers [1, 2, 6] for attribution
methods of deterministic NNs, some important properties
are extended for uncertainty attribution of BDL models.

• Implementation Invariance. The uncertainty attribu-
tion methods should assign the same attribution score
to the same input for equivalent neural networks, no
matter how they are implemented.

• Completeness. The uncertainty score can be fully de-
composed into the sum of individual attributions of the
input features.

• Sensitivity. The attribution methods should assign
zero attribution to the features that will not affect the
uncertainty. For two inputs that are different in one
feature, this feature should be assigned non-zero attri-
bution if the two inputs lead to different uncertainties.

• Saturation. Saturation demonstrates a phenomenon
in that we assign zero attribution for the regions with
zero gradients. The attribution methods should provide
tools to avoid saturation.

• Linearity. Denote f1, f2 as two different BDL mod-
els and M1(x),M2(x) as the corresponding attribu-
tion maps for x. The linear combination of the two
BDL models is af1 + bf2, where a, b ∈ [0, 1] and
a + b = 1. If the linearity is satisfied, the attribution
map for af1 + bf2 is aM1(x) + bM2(x).

• Positivity. Attribution methods should assign non-
negative values to input features. Since features are
always imperfect, they should positively contribute to
the uncertainty unless they are irrelevant.

• Fidelity. The features with higher attribution scores
should be more sensitive to uncertainty change.
Through certain changes in the problematic regions,
the uncertainty should be significantly reduced.

1.2. Further Discussion on the Vanilla Extensions
of Existing Gradient-based Methods

• Grad. For this method, we use the magnitude of the
raw gradients from the uncertainty U to the input x,
shown in Eq. (1):

MG(x) =

∣∣∣∣∂U∂x
∣∣∣∣ . (1)

• SmoothGrad. SmoothGrad tries to smooth the noisy
gradients by aggregating from the attributions of vari-
ous noisy images. Donote K as the number of noisy
images we generate through adding Gaussian noises,
the attribution map of SmoothGrad is shown in Eq. (2):

MSG(x) =
1

K

K∑
k=1

MG(x+N (0, σ2I)) (2)

where N (0, σ2I) represents the random noise sampled
from the Gaussian distribution with 0 mean and covari-
ance matrix σ2I . σ is a hyperparameter and I is the
identity matrix.

• FullGrad. The FullGrad method calculates the attri-
bution map MFG(x) by considering both the gradi-
ent of the uncertainty measure U with respect to the
input x (i.e., ∂U

∂x ) and the gradient of U with respect
to the bias variable bl in every convolutional or fully-
connected layer l (i.e., ∂U

∂bl
). This aggregation is math-

ematically expressed in Eq. (3):

MFG(x) = ψ

(∣∣∣∣∂U∂x ⊙ x

∣∣∣∣+∑
l

∣∣∣∣∂U∂bl ⊙ bl

∣∣∣∣
)

(3)

where ⊙ is the element-wise product and | · | returns
the absolute values. ψ is a post-processing function
for normalizing and rescaling the gradients.

• Itegrated Gradient (IG). Integrated gradient method
creates a path integral from a reference image x0 to x,
shown in Eq. (4):

MIG(x) = (x−x0)⊙
∫ 1

0

∂U(x0 + α(x− x0))

∂x
dα.

(4)
Since IG requires a reference image x0 and the attri-
bution results highly depend on the difference between
the reference image and the original image, various
extensions are proposed, leading to Blur IG [7] and
Guided IG [4].

Based on the survey papers [1, 2, 6], we briefly summarize
the properties satisfied by the aforementioned approaches
in Table 1. In the next section, we will show the theoretical
analysis of our proposed method.



Table 1. The properties of the selected gradient-based attribution methods. The “Yes” in saturation means the attribution method has tools
to avoid zero attribution for zero-gradient regions. “*” means the property depends on specific architectures or the chosen layers.

Method
Properties

Implementation Invariance Completeness Sensitivity Saturation Linearity Positivity Fidelity
Grad Yes No Yes No No Yes No
SmoothGrad Yes No Yes No No Yes Yes
FullGrad Yes* Yes Yes Yes No Yes Yes
IG Yes Yes Yes Yes Yes No Yes

1.3. Special Properties of UA-Backprop

Proposition 1.1. UA-Backprop always satisfies the com-
pleteness property.

Proof. Based on Algorithm 1 of the main body of the paper,
the uncertainty attribution map generated by our proposed
method is shown in Eq. (5):
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By incorporating the FullGrad method into the attri-
bution proposed backpropagation framework for the path
z → x, our method is able to satisfy several crucial prop-
erties. It should be noted that the fulfillment of these prop-
erties is primarily contingent on the choice of backpropaga-
tion method employed for z → x, as the attribution propa-
gation from U → g and g → z does not involve neural net-
work parameters. In the case of UA-Backprop + FullGrad,
our method is able to achieve completeness, sensitivity, sat-
uration, positivity, and fidelity.

2. Implementation Details and Experiment
Settings

In this section, we will discuss the implementation de-
tails of the proposed method and provide further informa-
tion about the experiment settings.

2.1. Implementation Details and Training Hyper-
parameters

2.1.1 Model Architecture

As described in Sec. 5 of the main body of the paper, we
adopt the deep ensemble method to estimate the uncer-
tainty. Specifically, we train an ensemble of five models
for each dataset with different initialization seeds. Common
data augmentation techniques, such as random cropping and
horizontal flipping, are applied to C10, C100, and SVHN
datasets. Our experiments are conducted on an RTX2080Ti
GPU using PyTorch. The model architecture and hyperpa-
rameters used in our experiments are detailed below.

• MNIST. We use the same architecture as [3]:
Conv2D-Relu-Conv2D-Relu-MaxPool2D-Dropout-
Dense-Relu-Dropout-Dense-Softmax. Each convolu-
tional layer contains 32 convolution filters with 4 × 4
kernel size. We use a max-pooling layer with a 2 × 2
kernel, two dense layers with 128 units, and a dropout
probability of 0.5. The batch size is set to 128 and
the maximum epoch is 30. We use the SGD opti-
mizer with a learning rate of 0.1 and momentum of 0.9.

• C10. For the C10 dataset, we employ ResNet18 as the
feature extractor, followed by a single fully-connected
layer for classification. We use the stochastic gradient
descent (SGD) optimizer with an initial learning rate
of 0.1 and momentum of 0.9. The maximum number
of epochs is set to 100, and we reduce the learning rate
to 0.01, 0.001, and 0.0001 at the 30th, 60th, and 90th
epochs, respectively. The batch size is set to 128.

• C100. For the C100 dataset, we use the same model
architecture as in C10, with ResNet18 as the feature
extractor and a single fully-connected layer for classi-
fication. We adopt the SGD optimizer with an initial



learning rate of 0.1 and momentum of 0.9. The maxi-
mum number of epochs is set to 200, and we decrease
the learning rate to 0.01, 0.001, and 0.0001 at the 60th,
120th, and 160th epochs, respectively. The batch size
is set to 64.

• SVHN. We use the same architecture as MNIST. The
batch size is set to 64 and the maximum epoch is 50.
We use the SGD optimizer with a learning rate of 0.1
and momentum of 0.9. The learning rate is decreased
to 0.01 and 0.001 at the 15th and 30th epochs.

2.1.2 Implementation of the Attribution Approaches

• Ours. Regarding the MNIST dataset, we set τ1 and τ2
to 0.08 and 0.3 respectively, whereas for C10, C100,
and SVHN, we set τ1 and τ2 to 0.55 and 0.02. The
hyperparameters are different since MNIST contains
only grayscale images, while the other datasets consist
of colorful images. We utilize the FullGrad method,
which is an internal part of the UA-Backprop for
z → x, and we refer to the implementation available
at https://github.com/idiap/fullgrad-
saliency with the default hyperparameters.

• Grad. We use the Torch.autograd to directly compute
the gradient from the uncertainty score and the input.

• SmoothGrad. Based on Eq. (2), we use K = 50, σ =
0.1 to smooth the gradients.

• FullGrad. We use the implementation in https:
//github.com/idiap/fullgrad-saliency
as a basis and extend it to the uncertainty attribution
analysis by computing the full gradients from the un-
certainty score to the input. We utilize the default hy-
perparameters.

• Blur IG and IG. We follow https://github.
com / Featurespace / uncertainty -
attribution for the uncertainty-adapted ver-
sions of the Blur IG and IG. The number of path
integrations used for Blur IG and IG is set to 100. We
use the white starting image for IG.

• CLUE and δ-CLUE. For CLUE and δ-CLUE,
a two-stage process is performed where we first
train two variational autoencoders (VAEs). Specif-
ically, for the MNIST dataset, the VAE imple-
mentation follows that of https://github.
com/lyeoni/pytorch-mnist-VAE/blob/
master/pytorch-mnist-VAE.ipynb. Mean-
while, for C10, C100, and SVHN datasets, we utilize
the implementation of https://github.com/
SashaMalysheva/Pytorch-VAE, with the same
model architectures and the default hyperparameters.

The output layer of the aforementioned implementa-
tion is modified to use a sigmoid activation function
for the binary cross-entropy loss. Once the VAEs are
trained, we apply the CLUE and δ-CLUE methods to
learn a modified image for each test data, where the un-
certainty loss and the reconstruction loss are weighted
equally. We use Adam optimizer with a learning rate
of 0.01 and set the maximum iteration to 500 with an
early stop criteria based on an L1 patience of 1e− 3.

2.2. Experiment Settings

2.2.1 Blurring Test

In Sec. 5 of the main context, we examine the performance
of the epistemic uncertainty maps in a blurring test. In this
test, the key hyperparameter is the standard deviation σ of
the Gaussian filter. However, using a fixed σ would be un-
fair since a small σ would have no impact on the image,
while a large σ would cause the blurred images to be out-of-
distribution. Different images may require varying degrees
of blurriness to reduce uncertainty appropriately. Therefore,
we perform an individual search for σ for each image, en-
suring that the blurred image has the minimum uncertainty.
The search range is from 0 to 20, with a step of 0.2. As
our proposed method aims to identify problematic regions
by analyzing uncertain images, we focus on the top 500 im-
ages with the highest epistemic uncertainty for the blurring
test evaluation. Note that for MNIST dataset, only the top
100 uncertain images are selected for evaluation since most
of the images have a good quality with low uncertainty. For
each metric, the median value is reported considering that
some blurred images could be out-of-distribution with in-
creased uncertainty.

2.2.2 Uncertainty Mitigation With Attention Mecha-
nism

In this study, we aim to improve model performance by us-
ing pre-generated uncertainty maps as attention to mitigate
uncertainty. Following Eq. (12) of the main body of the
paper, the uncertainty attribution mapM(x) is first normal-
ized using an element-wise softmax function and then used
for constructing the attention A(x). We use bilinear inter-
polation to rescale A(x) to the size of the hidden feature
maps. We then do an element-wise product of (1+αA(x))
with the hidden features, where α is a positive real number
that controls the strength of the attention. We choose α =
0.2 across all datasets and adding 1 is to keep the informa-
tion of the regions with low importance to ensure no knowl-
edge loss. In the main experiment, we use the epistemic un-
certainty maps, while an ablation study for using aleatoric
and total uncertainty maps as attention is provided in Ap-
pendix 4.2.3. To evaluate model robustness, we retrain the
model with the attention mechanism under limited data and
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Table 2. IoU ↑ and ADA ↑ for anomaly detection for various datasets. The bold values indicate the best performance

Method
C10 C100 SVHN Avg. Performance

IoU ADA IoU ADA IoU ADA IoU ADA
Ours 0.353 0.285 0.363 0.375 0.217 0.124 0.311 0.261
Grad 0.141 0.090 0.167 0.135 0.198 0.096 0.169 0.107
SmoothGrad 0.321 0.260 0.316 0.245 0.212 0.114 0.283 0.206
FullGrad 0.341 0.285 0.320 0.295 0.206 0.114 0.289 0.231
IG 0.171 0.090 0.170 0.105 0.139 0.052 0.160 0.082
Blur IG 0.182 0.125 0.318 0.290 0.150 0.078 0.217 0.164
CLUE 0.253 0.210 0.208 0.180 0.115 0.042 0.192 0.114
δ−CLUE 0.248 0.240 0.229 0.220 0.105 0.044 0.194 0.168

test on the original testing dataset. With limited data, there
is no need for applying complex models. Hence, we use the
CNN-based models for all the datasets. The model architec-
ture is Conv2D-Relu-Conv2D-Relu-MaxPool2D-Dropout-
Dense-Relu-Dropout-Dense-Relu-Dense-Softmax. Each
convolutional layer contains 32 convolution filters with 4×4
kernel size. We use a max-pooling layer with a 2×2 kernel,
several dense layers with 128 units, and a dropout proba-
bility of 0.5. The maximum training epoch is 120 and the
batch size is 128. We use the SGD optimizer with an ini-
tial learning rate of 0.1 and momentum of 0.9. The learning
rate is decreased at the 30th, 60th, and 90th epoch with a de-
cay rate of 0.2. Additional results for different experiment
settings can be found in Appendix 4.2.

3. Anomaly Detection

In this section, we employ our method to conduct
anomaly detection by leveraging the known ground-truth
problematic regions. Specifically, we substitute one patch
of each testing image with a random sample from the train-
ing data at an identical location. Despite the modified patch
still being marginally in-distribution, it mismatches with the
remaining regions, creating the ground-truth problematic
regions. We perform a quantitative assessment of the ef-
ficacy of our proposed method in detecting these anomaly
patches.

The experimental evaluation is conducted on three
datasets, namely C10, C100, and SVHN. MNIST is ex-
cluded from the comparison due to its grayscale nature.
To generate the ground-truth problematic regions, we ran-
domly modify a 10 by 10 patch in each testing image by
replacing it with a sample from the training data distribu-
tion at the same location. Out of the resulting modified im-
ages, we select 200 images that exhibit the largest increase
in uncertainty compared to the original images, indicating
the most problematic areas. Then the epistemic uncertainty
maps are generated, based on which, we predict the trou-
blesome regions by fitting a 10 by 10 bounding box that has
the highest average attribution score. It is worth noting that
we use a brute-force method to identify the predicted 10 by

10 patch. The predicted bounding boxes are compared with
the ground-truth counterparts using Intersection over Union
(IoU) and anomaly detection accuracy (ADA). The IoU is
calculated by dividing the area of the overlap by the area
of union, while the detection accuracy is the percentage of
images with IoU greater than 0.5.

Modified Images

Attribution Maps

Figure 1. The anomaly detection examples. The red bounding
boxes represent the predicted problematic regions while the orange
bounding boxes are the ground truth.

As shown in Figure 1, the predicted problematic bounding
boxes are well-matched with the ground truth, indicating
the method’s capability to accurately identify anomalous re-
gions. The quantitative evaluation in Table 2 reveals that
UA-Backprop outperforms other baselines, especially for
Grad, IG, Blur IG, CLUE, and δ-CLUE. These baselines
perform poorly in detecting anomalous regions, which may
be attributed to their limited ability to identify continuous
problematic regions (i.e., the 10 by 10 patches), as they tend
to detect only scattered locations.

4. Ablation Studies and Further Analysis
4.1. Efficiency Evaluation

In this section, we present a theoretical efficiency anal-
ysis of gradient-based methods for generating uncertainty
maps. We define the runtime of a single backpropagation
as O(1). Our proposed method, along with Grad and
FullGrad, can generate the maps within a single backpass,
resulting in a runtime of O(1). However, SmoothGrad, IG,



Table 3. Acc (%) and NLL for uncertainty mitigation evaluation of varying number of training samples N on MNIST and C10 datasets.
The results are aggregated over 5 independent runs.

Method
MNIST

N = 200 N = 500 N = 1000 N = 1500 N = 2000 Avg. Performance
ACC NLL ACC NLL ACC NLL ACC NLL ACC NLL ACC NLL

Ours 85.86 0.461 91.95 0.287 95.65 0.186 96.43 0.161 96.72 0.152 93.32 0.249
Grad 85.02 0.490 91.35 0.302 94.89 0.192 95.76 0.176 96.47 0.159 92.70 0.264
SmoothGrad 85.38 0.480 90.68 0.324 95.15 0.188 95.97 0.171 96.35 0.159 92.71 0.264
FullGrad 84.75 0.503 91.39 0.300 95.23 0.175 95.98 0.153 96.44 0.142 92.76 0.255
IG 82.66 0.563 91.98 0.350 94.94 0.220 95.71 0.190 96.34 0.162 92.33 0.297
Blur IG 85.34 0.485 91.57 0.288 95.04 0.184 96.02 0.155 96.48 0.145 92.89 0.252
Non-attention 84.64 0.524 90.78 0.358 95.01 0.221 95.94 0.189 96.29 0.172 92.55 0.293

Method
C10

N = 1000 N = 2000 N = 3000 N = 4000 N = 5000 Avg. Performance
ACC NLL ACC NLL ACC NLL ACC NLL ACC NLL ACC NLL

Ours 36.48 1.768 49.25 1.454 52.17 1.377 56.92 1.255 57.64 1.222 50.49 1.415
Grad 31.47 1.945 47.35 1.472 51.62 1.374 46.91 1.508 52.85 1.322 46.04 1.524
SmoothGrad 31.73 1.944 42.72 1.943 48.15 2.482 47.96 2.342 48.02 2.435 43.72 2.229
FullGrad 32.53 1.920 46.67 1.485 51.46 1.371 54.57 1.290 53.70 1.297 47.79 1.473
IG 34.43 1.829 47.96 1.472 53.32 1.349 56.37 1.263 58.41 1.200 50.10 1.423
Blur IG 31.96 1.932 46.38 1,495 52.11 1.364 52.48 1.335 54.71 1.277 47.53 1.481
Non-attention 31.58 1.922 46.57 1.490 51.25 1.378 54.89 1.281 55.11 1.265 47.88 1.467

and Blur IG require multiple backward passes for attribu-
tion analysis, with runtimes of O(T ) where T represents
the number of backward iterations. For SmoothGrad, the
value of T depends on the number of noisy images used for
aggregation, while for the IG-based method, T is based on
the number of samples generated to approximate the path
integral. The CLUE-based methods necessitate solving an
optimization problem per input to obtain a modified image
for reference, which further extends their runtimes. In Table
4, we provide the empirical results on the runtime required
for each baseline to attribute a single image, demonstrating
that our proposed method outperforms various baselines in
terms of computational efficiency.

Table 4. Runtime (s) for attributing one image.
Dataset/Method Ours Blur-IG SmoothGrad CLUE
MNIST 0.34 3.39 3.06 6.93
C10 0.46 4.06 3.59 18.43

4.2. Different Experiment Settings for Uncertainty
Attention Mitigation

4.2.1 Varying Number of Training Samples

In this section, we present the results of a study in which
we investigate the effect of varying the number of training
samples on the MNIST and C10 datasets in the context of
the retaining with the attention mechanism. The experimen-
tal outcomes are reported in Table 3. We observe that our
proposed method consistently outperforms other methods

when the training data is limited, as evidenced by the im-
proved testing accuracy and NLL. We also find that adding
attention to the training of the C10 dataset may not be bene-
ficial for some methods, possibly due to the noisy gradients.

4.2.2 Varying Hyperparameters

In this section, we investigate the impact of the attention
weight coefficient, denoted by α, on the performance of our
proposed method for MNIST and C10 datasets. We vary α
from 0 to 2 with a step of 0.2 and present the results in Table
5. Our proposed method consistently outperforms the plain
training without attention (α = 0) as we vary α. In this
study, we set α to a minimum value of 0.2. Remarkably,
even a small value of α leads to a significant improvement.
Furthermore, larger values ofα progressively accentuate the
informative regions, resulting in better performance, as ev-
idenced by the improved results for α = 1.8, 2 on MNIST
and α = 1.2, 1.4 on C10. Considering the stochastic na-
ture of the training process, we note that the model’s perfor-
mance is insensitive to α within a certain range.

4.2.3 Aleatoric and Total Uncertainty Map

In this study, we explore the use of alternative uncertainty
maps, namely aleatoric and total uncertainty maps, in place
of epistemic uncertainty maps as the attention mechanism.
Table 6 presents a comparison of model performance us-
ing different types of uncertainty maps. While all maps
exhibit a similar accuracy on the MNIST dataset, utiliz-
ing the epistemic uncertainty maps results in better fitting



Table 5. Acc (%) and NLL for uncertainty mitigation evaluation of varying α on MNIST and C10 datasets for our proposed method. We
randomly select 500 and 1000 training samples for MNIST and C10, respectively. The results are aggregated over 5 independent runs.
α = 0.2 is used for the main body of the paper.

α =
Dataset

MNIST C10 Avg. Performance
ACC NLL ACC NLL ACC NLL

0.0 90.78 0.358 31.62 1.921 61.20 1.140
0.2 91.95 0.287 36.48 1.768 64.22 1.028
0.4 91.62 0.329 35.22 1.806 63.42 1.068
0.6 91.98 0.320 35.73 1.793 63.86 1.057
0.8 92.07 0.297 38.39 1.735 65.23 1.016
1.0 92.17 0.299 36.42 1.779 64.30 1.068
1.2 92.28 0.285 37.59 1.750 64.94 1.018
1.4 91.86 0.307 38.00 1.737 64.93 1.022
1.6 91.99 0.295 36.24 1.782 64.12 1.038
1.8 92.52 0.269 36.52 1.760 64.52 1.015
2.0 92.51 0.269 37.77 1.743 65.14 1.006

Table 6. Acc (%) and NLL for uncertainty mitigation evaluation with different kinds of uncertainty maps.

Uncertainty
Dataset

MNIST C10
ACC NLL ACC NLL

Epistemic 91.95 0.287 36.48 1.768
Aleatoric 91.94 0.315 37.38 1.761
Total 91.60 0.330 35.14 1.810

based on NLL. On the C10 dataset, the aleatoric uncertainty
maps yield slightly better performance in both ACC and
NLL. Since aleatoric uncertainty captures input noise, the
aleatoric uncertainty maps can strengthen the regions with
less noise and may benefit when the input imperfections
result mainly from input noise. The superior results for
aleatoric uncertainty maps on the C10 dataset may be due
to the fact that the C10 dataset is noisier than the MNIST
dataset.

4.2.4 Input/Latent-space Attention for Uncertainty
Mitigation

Table 7 presents our experimental results using UA maps
as input-space attention. The weighted inputs A(x) ⊙ x
are obtained by using A(x) as input attention. We then use
the weighted inputs to retrain the model under the same ex-
perimental conditions as described in Appendix 2.2.2. Our
results demonstrate that using UA maps as input-space at-
tention yields similar performance compared to the results
obtained through latent-space experiments.

4.3. Hyperparameter Sensitivity of Our Proposed
Method

The temperatures τ1 and τ2 used in the normaliza-
tion functions are crucial hyperparameters in our proposed
method. It is necessary to perform normalization in the in-
termediate steps to ensure the satisfaction of the complete-

ness property. By choosing appropriate values for τ1 and
τ2, we aim to avoid uniform or overly sharp coefficients.
It is essential to avoid setting τ1 and τ2 too small or too
large, as this would result in uniform or extreme scores. In
this section, we show some blurring test results for SVHN,
C10, and C100 datasets to evaluate the sensitivity of τ1, τ2
within a certain range. In Table 8, the first row shows the
hyperparameters used for the experiments of the main body
of the paper. We can observe that the performance varies
slightly by choosing different hyperparameters within cer-
tain ranges. During experiments, we tune τ1, τ2 on C10
dataset and use the same hyperparameters (τ1 = 0.55, τ2 =
0.02) for all other datasets with color images. Since MNIST
contains only gray-scale images, we use a different set of
hyperparameters, i.e., τ1 = 0.08, τ2 = 0.3. It is worth not-
ing that the cross-dataset results are insensitive to the varia-
tions of τ1, τ2 within certain ranges. Tuning different τ1, τ2
for different datasets can further improve the performance.

4.4. Different Methods for the Path z → x

As described in Sec. 3 of the main paper, the UA-
Backprop method has the potential to serve as a gen-
eral framework for utilizing advanced gradient-based tech-
niques to investigate the path from z to x. By exploring the
path zsi → x, we obtain the relevance map Ms

i (x), which
highlights the crucial regions of x for zsi , as presented in
Eq. (10) of the main paper. Although we use the Full-
Grad method as our primary approach, other gradient-based



Table 7. Mitigation results (ACC ↑,NLL ↓) for MNIST and C10. The comparison is conducted for input-space attention and latent-space
attention for uncertainty mitigation.

Method
MNIST C10 Average

ACC NLL ACC NLL ACC NLL
Ours-latent 0.920 0.287 0.365 1.768 0.642 1.028
Ours-input 0.919 0.284 0.376 1.742 0.648 1.013

Table 8. MURR and AUC-URR (AUC) of the blurring test for our proposed method with different hyperparameters. The number of
blurring pixels is 2% or 5% of the total pixels. The first row shows the hyperparameters used for displaying the main results. The studies
are conducted on SVHN dataset.

Hyperparameter
Dataset - SVNH Dataset - C10 Dataset - C100

2% 5% 2% 5% 2% 5%
MURR AUC MURR AUC MURR AUC MURR AUC MURR AUC MURR AUC

τ1 = 0.55, τ2 = 0.02 0.625 0.526 0.758 0.407 0.629 0.664 0.848 0.484 0.195 0.901 0.302 0.821
τ1 = 0.50, τ2 = 0.02 0.603 0.550 0.739 0.419 0.622 0.664 0.848 0.496 0.194 0.900 0.304 0.821
τ1 = 0.60, τ2 = 0.02 0.607 0.540 0.732 0.407 0.626 0.666 0.850 0.489 0.194 0.901 0.303 0.821
τ1 = 0.65, τ2 = 0.01 0.645 0.518 0.771 0.397 0.617 0.666 0.848 0.491 0.194 0.901 0.298 0.820
τ1 = 0.70, τ2 = 0.02 0.595 0.545 0.747 0.419 0.624 0.660 0.854 0.480 0.194 0.901 0.302 0.821
τ1 = 0.55, τ2 = 0.03 0.635 0.509 0.758 0.387 0.603 0.690 0.848 0.510 0.194 0.905 0.296 0.831
τ1 = 0.55, τ2 = 0.04 0.608 0.562 0.761 0.406 0.592 0.682 0.829 0.508 0.190 0.903 0.294 0.835

techniques can also be employed within the UA-Backprop
framework. As a simple baseline, UA-Backprop + Grad
uses

Ms
i (x) = ψ

(
∂zsi
∂x

)
(7)

where ψ is a softmax function with temperature τ2, similar
to UA-Backprop + FullGrad. However, the raw gradients
could be noisy, and advanced gradient-based methods could
be used. For example, UA-Backprop + InputGrad uses

Ms
i (x) = ψ

(
x⊙ ∂zsi

∂x

)
(8)

where the input image is used to smooth the gradients. We
can also use the integrated gradient (IG) method, which is
an extension of InputGrad by creating a path integral from
a reference image x0 to input x. For UA-Backprop + IG,

Ms
i (x)

= ψ

(
(x− x0)⊙

∫ 1

0

∂zi(x0 + α(x− x0),θ
s)

∂x
dα

)
(9)

where x0 could be a black or white image as the reference.
In this section, we provide an ablation study of using
different gradient-based methods for the path z → x.
The blurring test evaluations are provided in Table 9 for
MNIST and SVHN datasets. The first row ”UA-Backprop
+ FullGrad” represents the method shown in the main body
of the paper. By using other methods for the path z → x,
we can also achieve considerable results. For example, UA-
Backprop + InputGrad can achieve some improvements for
the MNIST dataset. In short, our proposed method can be

a general framework combining the recent development of
other gradient-based methods for deterministic NNs.

4.5. UA-Backprop for A Deterministic NN

Our method can be applied to Ensemble-1 where the
uncertainty is calculated by the entropy, i.e., the aleatoric
uncertainty. However, the results shown in Table 10 are
not good due to inadequate uncertainty quantification (UQ).
By using more advanced single-network UQ methods, i.e.
Laplacian approximation (LA) [5], our UA method can
yield improved results. Note that LA can also provide pa-
rameter samples from the posterior distribution, which can
be directly used for UA-Backprop. Further studies on effec-
tively performing UA on deterministic models can be our
future direction. We will also concentrate on developing an
end-to-end training approach that produces the attribution
maps for a single network during training iterations and in-
tegrates the knowledge of UA for further model enhance-
ment.

4.6. Compare to Random Map

In this section, we compare our proposed method with
the random map to better illustrate the effectiveness of the
proposed method. The random map is generated by sam-
pling each element from the uniform distribution U [0, 1].
To this end, the blurring test results are presented in Ta-
ble 11 to compare the performance of the proposed method
against the random maps. The experimental results show
that the random maps fail to reduce the uncertainty during
the blurring test.



Table 9. MURR and AUC-URR (AUC) of the blurring test for our proposed method with different approachs for z → x. The number of
blurring pixels is 2% or 5% of the total pixels. The studies are conducted on MNIST and SVHN datasets.

Method
MNIST SVHN

2% 5% 2% 5%
MURR AUC MURR AUC MURR AUC MURR AUC

UA-Backprop + FullGrad 0.648 0.667 0.850 0.445 0.625 0.526 0.758 0.407
UA-Backprop + Grad 0.519 0.714 0.720 0.532 0.611 0.543 0.712 0.451
UA-Backprop + InputGrad 0.673 0.618 0.826 0.413 0.549 0.598 0.702 0.445
UA-Backprop + IG 0.611 0.641 0.795 0.439 0.529 0.618 0.703 0.456

Table 10. Attribution results (MURR ↑, AUC-URR ↓).

Method
MNIST (%2) C10 (%2)

MURR AUC-URR MURR AUC-URR
Ours-Ensemble-5 0.648 0.667 0.629 0.664
Ours-Ensemble-1 0.425 0.828 0.506 0.710
Ours-LA 0.487 0.768 0.534 0.692

Table 11. MURR and AUC-URR (AUC) of the blurring test to
compare our proposed method with randomly generated maps.
The number of blurring pixels is 2% of the total pixels. The studies
are conducted on MNIST and SVHN datasets.

Method
Dataset

MNIST (2%) SVHN (2%)
MURR AUC MURR AUC

Ours 0.648 0.667 0.625 0.526
Random 0.023 0.987 0.011 0.992

4.7. Compare to UA-Backprop without Normaliza-
tion

The normalization steps are required to achieve the
completeness property. Nevertheless, an ablation study
shows that with normalization, the MURR (2% / 5%) is
0.648/0.850 for MNIST and 0.629/0.848 for C10; without
normalization, it can only achieve 0.471/0.797 for MNIST
and 0.518/0.727 for C10.

5. Additional Examples

Figure 2 displays supplementary instances of the uncer-
tainty attribution maps generated by various methods across
multiple datasets. Our proposed method offers a more un-
derstandable and clear visualization of the generated maps
compared to the vanilla application of existing CA methods.
The latter often yields ambiguous explanations because of
the presence of noisy gradients. In contrast, our approach
provides a decomposition of pixel-wise contributions that
efficiently explains the uncertainty while offering better re-
gional illustrations that could be comprehended by individ-
uals without expertise in the field.
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Figure 2. Additional examples of the uncertainty attribution maps for various methods across multiple datasets.
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