
Hard Patches Mining for Masked Image Modeling
– Supplementary Material –

Haochen Wang1,3 Kaiyou Song2 Junsong Fan1,4 Yuxi Wang1,4 Jin Xie2 Zhaoxiang Zhang1,3,4

1Center for Research on Intelligent Perception and Computing,
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences

2Megvii Technology 3University of Chinese Academy of Sciences
4Centre for Artificial Intelligence and Robotics,

Hong Kong Institute of Science & Innovation, Chinese Academy of Science
{wanghaochen2022, junsong.fan, zhaoxiang.zhang}@ia.ac.cn

{songkaiyou, xiejin}@megvii.com yuxiwang93@gmail.com

Supplementary Material

In this supplementary material, we first provide mode
implementation details for reproducibility in Sec. A. Next,
in Sec. B, we ablate baselines (i.e., BEiT [1] and iBOT [29])
and decoder designs. The pseudo-code of the easy-to-hard
mask generation in a Pytorch-like style is provided in Sec. C.
Finally, in Sec. D, we provide both visual and quantitative
evidence of our key assumption: discriminative patches are
usually hard to reconstruct.

A. Implementation Details

ViT Architecture. We follow the standard vanilla ViT [9]
architecture used in MAE [11] as the backbone, which is a
stack of Transformer blocks [23]. Following MAE [11] and
UM-MAE [15], we use the sine-cosine positional embedding.
For the downstream classification task, we use features
globally averaged from the encoder output for both end-
to-end fine-tuning, linear probing, and k-NN classification.

Decoder Design. Our HPM contains two decoders, i.e.,
the image reconstructor and the loss predictor. These two
decoders share the architecture, and each decoder is a stack
of Transformer blocks [23] followed by a linear projector.

Effective Training Epochs. Following iBOT [29], we
take the effective training epochs as the metric of the
training schedule, due to extra computation costs brought
by multi-crop [2] augmentation, which is a widely used
technique for contrastive methods. Specifically, the effective
training epochs are defined as the actual pre-training epochs
multiplied with a scaling factor r. For instance, DINO [3]
is trained with 2 global 224×224 crops and 10 local 96×96
crops, and thus r = 2 + (96/224)2 × 10 ≈ 4. More details

Table S1. Pre-training settings. By default, we use ViT-B/16 [9]
as the backbone and apply 200 epochs pre-training.

config value
optimizer AdamW [19]
base learning rate 1.5e-4
weight decay 0.05
momentum β1, β2 = 0.9, 0.95 [4]
layer-wise lr decay [6] 1.0
batch size 4096
learning rate schedule cosine decay [20]
warmup epochs 10 (ViT-B), 40 (ViT-L)
training epochs 200
augmentation RandomResizedCrop

and examples can be found in [29].

A.1. ImageNet Classification

For all experiments in this paper, we take ImageNet-
1K [21], which contains 1.3M images for 1K categories,
as the pre-trained dataset. By default, we take ViT-B/16 [9]
as the backbone and it is pre-trained 200 epochs followed
by 100 epochs of end-to-end fine-tuning. Implementation
details can be found in Tab. S1, Tab. S2, and Tab. S3. Most
of the configurations are borrowed from MAE [11]. The
linear learning rate scaling rule [10] is adopted: lr =
lrbase × batch_size / 256. For supervised training from
scratch, we simply follow the fine-tuning setting without
another tuning.

We follow the linear probing setting of MoCo v3 [5]. We
do not use mixup [27], cutmix [26], drop path [14], and color
jitter. The k-NN classification settings are borrowed from
DINO [3]. All images are first resized to 256×256 and then
center-cropped to 224×224. We report the best result among
k = 10, 20, 100, 200.

Table S2. Fine-tuning settings. By default, we use ViT-B/16 [9]
as the backbone and apply 100 epochs fine-tuning on ImageNet-
1K [21] after pre-training.

config value
optimizer AdamW [19]
base learning rate 5e-4
weight decay 0.05
momentum β1, β2 = 0.9, 0.999
layer-wise lr decay [6] 0.8
batch size 1024
learning rate schedule cosine decay [20]
warmup epochs 5
training epochs 100 (ViT-B/16), 50 (ViT-L/16)
augmentation RandAug (9, 0.5) [8]
label smoothing [22] 0.1
mixup [27] 0.8
cutmix [26] 1.0
drop path [14] 0.1

Table S3. Linear probing settings. By default, we use ViT-
B/16 [9] as the backbone and apply 100 epochs linear probing
on ImageNet-1K [21] after pre-training.

config value
optimizer SGD
base learning rate 1e-3
weight decay 0
momentum β1 = 0.9
batch size 4096
learning rate schedule cosine decay [20]
warmup epochs 10
training epochs 100
augmentation RandomResizedCrop

Table S4. Ablation study on different decoder designs. The
speedup is evaluated under 8 Telsa V100 GPUs with 32 images with
resolution 224×224 per GPU. The default settings of our proposed
HPM are highlighted in color.

blocks speedup fine-tune linear k-NN

1 1.94× 82.67 39.83 16.83
2 1.68× 82.50 46.74 22.63
4 1.37× 82.75 53.95 33.60
8 1.00× 82.95 54.92 36.09

12 0.76× 82.84 54.83 35.93

dim speedup fine-tune linear k-NN

128 1.31× 82.74 42.51 17.67
256 1.18× 82.80 52.39 29.46
512 1.00× 82.95 54.92 36.09

1024 0.61× 82.81 54.01 36.54

A.2. COCO Object Detection and Segmentation

Network Architecture. We take Mask R-CNN [12] with
FPN [17] as the object detector. Following [11] and [15], to
obtain pyramid feature maps for matching the requirements
of FPN [17], whose feature maps are all with a stride of
16, we equally divide the backbone into 4 subsets, each
consisting of a last global-window block and several local-

window blocks otherwise, and then apply convolutions to
get the intermediate feature maps at different scales (stride
4, 8, 16, or 32), which is the same as ResNet [13].

Training. We perform end-to-end fine-tuning on COCO [18]
for 1× schedule, i.e., 12 epochs, for ablations (i.e., Tab. 6)
with 1024×1024 resolution. We simply follow the configu-
ration of ViTDet [16] in detectron2 [24]. Experiments are
conducted on 8 Telsa V100 GPUs with a batch size of 16.

A.3. ADE20k Semantic Segmentation

Network Architecture. We take UperNet [25] as the
segmentation decoder following the code of [1, 7, 15].

Training. Fine-tuning on ADE20k [28] for 80k iterations is
performed for ablations. When compared with previous
methods, 160k iterations of fine-tuning are performed.
We adopt the exact same setting in mmsegmentation [7].
Specifically, each iteration consists of 16 images with
512×512 resolution. The AdamW [19] optimizer is adopted
with an initial learning rate of 1e-4 and a weight decay
of 0.05 with ViT-B. For ViT-L, the learning rate is 2e-
5. We apply a polynomial learning rate schedule with
the first warmup of 1500 iterations following common
practice [1, 7, 15]. Experiments are conducted on 8 Telsa
V100 GPUs.

B. More Experiments

method fine-tune
BEiT [1] 80.9
HPM (w/ BEiT) 81.5 ↑ 0.6
iBOT [29] 82.9
HPM (w/ iBOT) 83.4 ↑ 0.5

HPM over other baselines. We
study the effectiveness of HPM
over BEiT [1] and iBOT [29] in
the right table. We perform 200
and 50 epochs pre-training for
BEiT [1] and iBOT [29], respectively. Note that iBOT [29]
utilizes 2 global crops (2242) and 10 local crops (962).
Therefore, the effective pre-training epoch of iBOT-based
experiments is 50 × (2 + 10×962

2242) ≈ 200. From the table,
we can tell that HPM brings consistent improvements.

Ablations on decoder design. Our decoder is a stack of
Transformer blocks [23] with a fixed width following [11].
We study its depth and width in Tab. S4. 8 blocks with 512-d
features is the best choice, which is exactly the same with
MAE [11].

C. Implementation of Easy-to-Hard Masking

Algorithm S1 shows the implementation of easy-to-hard
mask generation introduced in Sec. 3.4. Specifically, at
training epoch t, we want to generate a binary mask M with
γN patches to be masked. Under the easy-to-hard manner,
there are αtγN patches masked by predicted loss L̂t and the
remaining (1− αt)γN are randomly selected.

Algorithm S1 Pseudo-Code of Easy-to-Hard Masking.

pred_t: predicted reconstruction loss
t: current epoch
T: total training epochs

easy-to-hard mask generation
def mask_generation(pred_t, t, T, mask_ratio):

L = len(pred_t)
total number of visible patches
len_keep = int(L * (1 - mask_ratio))

number of patches masked by predicted loss
alpha_t = alpha_0 + t/T * (alpha_T - alpha_0)
len_pred = int(L * mask_ratio * alpha_t)
ids_shuffle = argsort(pred_t)

compute remaining patches
remain = delete(arange(L) - ids_shuffle[-len_pred:])

random masking for remained patches
ids_shuffle[:(L-len_pred)] = shuffle(remain)

generate mask: 0 is remove, 1 is keep
mask = ones([L,]).bool()
mask[:len_keep] = 1

restore the mask
ids_restore = argsort(ids_shuffle)
return gather(mask, ids_restore)

D. Hard to Reconstruct v.s. Discrimination
Visual evidence. We provide qualitative results on
ImageNet-1K [21] validation set in Fig. S1 and COCO [18]
validation set in Fig. S2, respectively. As illustrated in
Figs. S1 and S2, patches with higher predicted reconstruction
loss usually are more discriminative (i.e., object or forehead).

input accuracy
random 50% 79.1
bottom 50% 78.7 ↓ 0.4
top 50% 79.8 ↑ 0.7
all 100% 80.9

Quantitative evidence. Here, we
present a toy experiment to explore
the relationship between hard to
reconstruct and discrimination for
classification. In the right table,
three ViT-B/16 [9] models are trained from scratch on
ImageNet-1K for 100 epochs under image-level supervision.
Only 50% patches are input, and “bottom” and “top”
indicates patches with lower and higher Lpred are visible,
respectively. We load HPM pre-trained with 200 epochs for
computing Lpred. Empirically, patches with higher Lpred

contribute more to classification. We hope this will inspire
future work.

References
[1] Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training

of image transformers. In International Conference on Learning
Representations (ICLR), 2022. 1, 2

[2] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr
Bojanowski, and Armand Joulin. Unsupervised learning of visual
features by contrasting cluster assignments. Advances in Neural
Information Processing Systems (NeurIPS), 2020. 1

[3] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien
Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties

in self-supervised vision transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV),
2021. 1

[4] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun,
David Luan, and Ilya Sutskever. Generative pretraining from pixels.
In International Conference on Machine Learning (ICML), 2020. 1

[5] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of
training self-supervised vision transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV),
2021. 1

[6] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D
Manning. Electra: Pre-training text encoders as discriminators
rather than generators. In International Conference on Learning
Representations (ICLR), 2020. 1, 2

[7] MMSegmentation Contributors. MMSegmentation: Openmmlab
semantic segmentation toolbox and benchmark. https://
github.com/open-mmlab/mmsegmentation, 2020. 2

[8] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le.
Randaugment: Practical automated data augmentation with a
reduced search space. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshop (CVPRW),
2020. 2

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations (ICLR),
2021. 1, 2, 3

[10] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and
Kaiming He. Accurate, large minibatch sgd: Training imagenet in 1
hour. arXiv preprint arXiv:1706.02677, 2017. 1

[11] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár,
and Ross Girshick. Masked autoencoders are scalable vision
learners. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022. 1, 2

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick.
Mask r-cnn. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2017. 2

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. 2

[14] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q
Weinberger. Deep networks with stochastic depth. In European
Conference on Computer Vision (ECCV), 2016. 1, 2

[15] Xiang Li, Wenhai Wang, Lingfeng Yang, and Jian Yang. Uniform
masking: Enabling mae pre-training for pyramid-based vision
transformers with locality. arXiv preprint arXiv:2205.10063, 2022.
1, 2

[16] Yanghao Li, Saining Xie, Xinlei Chen, Piotr Dollar, Kaiming He,
and Ross Girshick. Benchmarking detection transfer learning with
vision transformers. arXiv preprint arXiv:2111.11429, 2021. 2

[17] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath
Hariharan, and Serge Belongie. Feature pyramid networks for
object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2017. 2

[18] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick.
Microsoft coco: Common objects in context. In European
Conference on Computer Vision (ECCV), 2014. 2, 3

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

[19] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 1, 2

[20] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent
with warm restarts. In International Conference on Learning
Representations (ICLR), 2017. 1, 2

[21] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya
Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision
(IJCV), 2015. 1, 2, 3

[22] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens,
and Zbigniew Wojna. Rethinking the inception architecture for
computer vision. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2016. 2

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.
Attention is all you need. Advances in Neural Information
Processing Systems (NeurIPS), 2017. 1, 2

[24] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo,
and Ross Girshick. Detectron2. https://github.com/
facebookresearch/detectron2, 2019. 2

[25] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun.
Unified perceptual parsing for scene understanding. In European
Conference on Computer Vision (ECCV), 2018. 2

[26] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun,
Junsuk Choe, and Youngjoon Yoo. Cutmix: Regularization strategy
to train strong classifiers with localizable features. In Proceedings
of the IEEE/CVF International Conference on Computer Vision
(ICCV), 2019. 1, 2

[27] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David
Lopez-Paz. Mixup: Beyond empirical risk minimization. In
International Conference on Learning Representations (ICLR),
2018. 1, 2

[28] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso,
and Antonio Torralba. Scene parsing through ade20k dataset. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2017. 2

[29] Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan
Yuille, and Tao Kong. Image bert pre-training with online tokenizer.
In International Conference on Learning Representations (ICLR),
2022. 1, 2

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

Figure S1. Qualitative results on ImageNet-1K validation set. For each tuple, we show the input image (left) and the patch-wise predicted
reconstruction loss (right). Red means higher losses and blue indicates the opposite.

Figure S2. Qualitative results on COCO validation set. For each tuple, we show the input image (left) and the patch-wise predicted
reconstruction loss (right). Red means higher losses and blue indicates the opposite.

