
Supplement

Oxford Radar vReLoc

Figure S1. Overview of the two datasets.
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Figure S2. Visualization of the Oxford Radar dataset. The RGB
camera images are for visualization only, and we do not use them
in our pipeline.

S1. Supplement Video and Code

We welcome readers to watch our supplemental anony-
mous video that shows the runtime performance on the
Oxford Radar dataset: https://www.youtube.com/
watch?v=qplZMOZG-7k

We also welcome readers to run our code at: https:
//github.com/sijieaaa/HypLiLoc

S2. More About Pose Regression

Visual relocalization refers to the process of determining
visual sensor poses from known scene representations such
as images, point clouds, key points, features, pose maps, and
neural networks.

The LiDAR-based pose regression is a type of relocal-
ization pipeline, where the known scene is represented by
neural networks in an implicit way, which is different from
previous solutions. Given LiDAR point clouds as inputs, the
neural network regresses the corresponding poses directly.
This formulation is similar to (but operates reversely) the
current popular Neural Radiance Fields (NeRFs) [3, 10] that
take poses as inputs and outputs the corresponding sensor
data. Therefore, the pose regression network can be viewed
as another type of neural representation.

We compare typical localization pipelines in Table S1.
Structure-based methods achieve the highest global/local
pose accuracy, but they suffer from the lowest speed. These
types of methods are usually used for offline applications
where high-speed inference is not necessary and sufficient
computing resources are provided. Visual odometry methods
estimate relative poses between frames and serve as a module
in the complete SLAM system. The SLAM system provides
accurate local pose estimations, but global pose estimations
depend on additional information such as loop closure. The
retrieval-based methods predict the pose by exhaustively
searching the top-matched representations in the database,
which is the main cause of high memory consumption and
low inference speed. By contrast, pose regression models
implicitly represent the scene using neural networks and do
not require the database during inference.

S3. Performance After Outlier Filtering

Retrieval-based models [5] require a pre-built database
to store candidate scene representations with corresponding
poses. Pose regression models do not rely on any database
but may suffer from extreme outliers that are far from roads
because there is no map or road trajectory information pro-
vided. In contrast, the retrieval-based models can only output
the locations that are restricted to the trajectory.

This inspires us to explore the possibility of including
trajectory information for our regression-based model to
further improve its performance. We exclude outlier poses
that are far from the database poses over some threshold
distances. More specifically, if the regression-based model
outputs some pose that is far from all the poses that have
been recorded in the trajectory over a threshold distance,
we take it as an outlier and discard this output. (Note this

1

https://www.youtube.com/watch?v=qplZMOZG-7k
https://www.youtube.com/watch?v=qplZMOZG-7k
https://github.com/sijieaaa/HypLiLoc
https://github.com/sijieaaa/HypLiLoc


Full-6 Full-7 Full-8 Full-9

Figure S3. More trajectory visualization on the Oxford Radar dataset. The ground truth trajectories are shown in bold blue lines, and the
estimated trajectories are shown in thin red lines.

Pipeline 3D Model Inference Database Global Acc. Local Acc. Speed

Structure-based keypoint matching need need high high slow
Visual odometry - - low high fast
SLAM increasing increasing low high medium
Retrieval - need medium medium slow
Pose regression - - medium medium fast

Table S1. Comparison of different localization pipelines.

technique is only introduced in the supplement and is not
used in the main paper.)

In Table S2, outlier filtering brings 1.25m/0.31◦ mean
error improvements and excludes 27.6% pose estimations. In
Table S3, this strategy even supports our network to achieve
less than 3m translation error with 16.1% pose estimations
dropped out, which is a promising result in the city-wise
relocalization task.

In real applications, the exclusion of outliers can be aug-
mented with other techniques like the wheel or LiDAR odom-
etry modules to remedy the dropped poses.

Outlier Thd. (m) Mean Error (m/◦) Remaining Poses (%)

None 5.82 / 0.97 100.0
25 5.37 / 0.88 99.5
10 5.10 / 0.82 98.6
7 5.03 / 0.79 98.1
5 4.96 / 0.77 97.4
3 4.85 / 0.75 95.2
1 4.57 / 0.66 72.4

Difference (-1.25 / -0.31) (-27.6)

PointNetVLAD [5] 23.59 / 5.87 100.0

Table S2. Performance after filtering pose estimation outliers on
Full-8 route of the Oxford Radar dataset.

S4. More Trajectory Visualization

We visualize more of the output trajectories from different
routes on the Oxford Radar dataset as shown in Fig. S3.

Outlier Thd. (m) Mean Error (m/◦) Remaining Poses (%)

None 3.45 / 0.84 100.0
25 3.27 / 0.74 99.5
10 3.18 / 0.71 99.2
7 3.15 / 0.70 99.0
5 3.11 / 0.69 98.8
3 3.05 / 0.68 97.7
1 2.90 / 0.64 83.9

Difference (-0.55 / -0.20) (-16.1)

PointNetVLAD [5] 13.71 / 2.57 100.0

Table S3. Performance after filtering pose estimation outliers on
Full-9 route of the Oxford Radar dataset.

S5. Dataset Details

The datasets we used in our experiments include the Ox-
ford Radar dataset and the vReLoc dataset as shown in
Fig. S1. For the Oxford Radar dataset, we also visualize
the environmental conditions on different routes in Fig. S2.
Note that the RGB camera images are for visualization only,
and we do not use them in our network. Both of the datasets
are available online at:

• https : / / oxford - robotics - institute .
github.io/radar-robotcar-dataset/

• https://github.com/loveoxford/vReLoc

For each dataset, we list the corresponding data split as
shown in Table S4 and Table S5.

https://oxford-robotics-institute.github.io/radar-robotcar-dataset/
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Scene Date/Time Tag Training Test

Full-1 2019-01-11-14-02-26 sun ✓
Full-2 2019-01-14-12-05-52 overcast ✓
Full-3 2019-01-14-14-48-55 overcast ✓
Full-4 2019-01-18-15-20-12 overcast ✓

Full-6 2019-01-10-11-46-21 rain ✓
Full-7 2019-01-15-13-06-37 overcast ✓
Full-8 2019-01-17-14-03-00 sun ✓
Full-9 2019-01-18-14-14-42 overcast ✓

Table S4. Dataset details on the Oxford Radar dataset.

Scene Tag Training Test

Seq-03 static ✓
Seq-12 walking ✓
Seq-15 walking ✓
Seq-16 walking ✓

Seq-05 static ✓
Seq-06 static ✓
Seq-07 static ✓
Seq-14 walking ✓

Table S5. Dataset details on the vReLoc dataset.

S6. Baseline Models
The baseline models in our comparison include: Point-

NetVLAD [5], DCP [9], PoseLSTM [6], MapNet [1],
AD-MapNet [2], AtLoc+ [7], MS-Transformer [4], Point-
Loc [8], PosePN [11], PosePN+ [11], PoseSOE [11], and
PoseMinkLoc [11].

S7. Codebase
Our codes are developed based on the following reposito-

ries:

• https://github.com/ori-mrg/robotcar-
dataset-sdk,

• https://github.com/BingCS/AtLoc,

• https://github.com/htdt/hyp_metric.
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