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In this document, we provide more details as supplemen-
tary materials to our main submission. We first present the
performance of the pair-wise ranking classifier in Section
1, proving that ranking knowledge is transferrable from la-
beled images to unlabeled images. Then, we compare our
ranking consistency method with the previous works [2, 4]
utilizing unlabeled data in Section 2. We further analyze the
spatial-aware feature by changing the scale and position of
the candidate crop to observe how placing the crop can get
a high aesthetic score and show some cropping results in
Section 3. We also analyze the influence of different hyper-
parameter values in Section 4. In addition, more quantita-
tive comparisons are shown in Section 5 . In the end, some
failure cases are presented in Section 6.

1. Performance of Pair-wise Ranking Classifier
As described in Section 3.3 in the main paper, we train

a pair-wise ranking classifier to transfer the ranking knowl-
edge from labeled images to unlabeled images. Thus, the
performance of the ranking classifier is important as the
ranking knowledge can be transferred only if the classifier is
well-trained. Otherwise, it may even harm the performance
of the cropping model. We train the classifier using the la-
beled images in the training set of GAICD [5] and test its
classification accuracy on both the training set and test set.
We also report the ranking accuracy based on the predicted
crop scores, which is referred to as basic model accuracy.
Specifically, we train our model without rank consistency
on the training images and apply the model to predict the
crop scores in test images. Then, we obtain the rank of two
crops according to their crop scores.

The results are shown in Table 1. We can observe that the
ranking accuracy of the pair-wise classifier is better than the
basic model(our model without rank consistency) in both
the training set and the test set. Since the pair-wise rank-
ing classifier is more concentrated on learning the relative
ranks of candidate crops when trained on the training set,
its ranking accuracy is higher than the basic model on the
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Model Dataset Ranking Accuracy

pair-wise classifier training set 92.2%
basic model training set 89.3%

pair-wise classifier test set 88.7%
basic model test set 82.8%

Table 1. The ranking accuracy on GAICD [5] training set and
test set of our pair-wise ranking classifier and basic model. Basic
model means we calculate the ranking accuracy based on the crop
scores predicted by our model without using rank consistency.

training set. When applying the trained classifier to the test
set, the accuracy gap between the training set and the test set
is smaller than that of basic model accuracy, and the rank-
ing accuracy is higher than the basic model on the test set,
which proves that the ranking knowledge is transferrable
from the training set to test set. With transferred ranking
knowledge, the rank consistency regularization on the unla-
beled data is useful and can help improve the performance
of the cropping model.

2. Alternative Approaches to Use Unlabeled
Data

In this section, we compare our ranking consistency
method with other alternative approaches to use unlabeled
data. We treat our model without rank consistency as the
basic model. Then, we equip the basic model with different
approaches to use unlabeled data.

Firstly, we use unlabeled test images in the same way
as VFN [2]. Specifically, for each test image, we follow
[2] to generate candidate crops including 8 boarder crops,
6 square crops, and one crop of the whole image. We send
the images and the generated crops to the model to predict
aesthetic scores. We adopt the same loss function as in [2],
which assumes that the aesthetic score of the whole image
is higher than the scores of other crops.

Secondly, we use unlabeled test images in the same way
as [4], which is similar to commonly used self-training.



Unlabeled SRCC ↑ PCC ↑ Acc5 ↑ Acc10 ↑
- 0.865 0.889 63.7 82.6

Ours 0.872 0.893 64.8 83.3
[2] 0.863 0.886 63.2 82.5
[4] 0.864 0.887 64.0 82.7

Table 2. The results obtained by using different approaches to use
unlabeled test images.

Specifically, we first train the basic model to predict the
pseudo labels of candidate crops in unlabeled test images.
Then, we add these test crops with pseudo labels to the
training set and retrain our basic model.

The results are presented in Table 2. By comparing
row 2 with row 3 and row 4, we can see that two al-
ternative ways [2, 4] to use unlabeled test images cannot
exceed our proposed rank consistency. The performance
of [2] even drops slightly compared with row 1, which
could be explained as follows. [2] assumes that the aes-
thetic score of the whole image is higher than the scores of
other crops, which does not always hold. The approach [4]
only achieves comparable results with row 1, probably be-
cause self-training as in [4] may not introduce new knowl-
edge when retraining the basic model. Therefore, even in
the transductive learning setting, the unreasonable or naive
ways to use unlabeled test images could not bring much
performance gain. In contrast, our proposed method can
mine the inherent ranking knowledge, helping to transfer
the knowledge more effectively.

3. Analyses of the Spatial-aware Feature

In this section, we provide some intuitive illustrations of
how the spatial-aware feature judges the aesthetic quality by
considering the spatial relation between candidate crops and
aesthetic elements. Specifically, we vary the scale and posi-
tion of the candidate crop and report the predicted scores
only using spatial-aware features, which are obtained by
multiplying the spatial-aware features with the correspond-
ing weights of the last fully connected layer and adding half
bias.

We also select the example image shown in Section 4.3
in our main text and the results are shown in Figure 1. Row
1 is the best crop predicted with aesthetic scores contributed
by spatial-aware features. We can find that the crop encloses
the semantic edges and salient objects as much as possible.
Row 2 to row 5 are crops in different positions with the
same size. They cut through some edges or salient objects,
leading to the dropping scores. The last two rows contain
the two persons but have different sizes. Their scores are
higher than the above four rows. We can observe that the
last row has relatively higher composition quality consid-

Figure 1. The visual analyses of spatial-aware features. The first
column shows the crops in the source images with their aesthetic
scores (in red) contributed by spatial-aware features. The second
and the third columns show the feature maps of layer 2 and layer
3 respectively. The first row is the predicted top-1 crop, and we
vary the crop position from row 2 to row 5. In row 6 and row 7,
we vary the scale and aspect ratio of the crop.

ering the position of the people in the image, so its score
is relatively higher. The above results demonstrate how the
model places the crops and verify the effectiveness of our
proposed spatial-aware feature.

4. Hyper-parameter Analyses
Recall that we have the following hyper-parameters: η

(score margin applied when training the pair-wise classi-
fier), P (the number of crop pairs sampled when training



Figure 2. Classification accuracy variation on GAICD [5] test set
of our method with different hyper-parameter η (score margin ap-
plied when training the pair-wise classifier).

Figure 3. Classification accuracy variation on GAICD [5] test set
of our method with different hyper-parameter P (the number of
crop pairs sampled when training the pair-wise classifier).

the pair-wise classifier), λcls (weight of classification loss),
and δ (margin in the consistency loss). We vary each hyper-
parameter and fix other hyper-parameters and get the results
via cross validation.

We first test different values of η and P report the clas-
sification accuracy of the pair-wise classifier as they in-
fluence the performance of the pair-wise classifier signifi-
cantly. We set η in the range of [0, 2] with an interval of
0.5, and P = 32, 128, 256, 512, 1024. We test the clas-
sification accuracy on GAICD [5] test set and the results
are shown in Figure 2 and Figure 3. We can see that when
η = 0.5, the classifier has the highest predicting accuracy,
and it is relative stable when η is in the range [0.5, 1.5].
It can be interpreted that if the score margins are too large

λcls Acc5 ↑ Acc10 ↑ SRCC ↑
0.01 63.4 82.5 0.864
0.1 64.5 83.0 0.867
1 64.8 83.3 0.872
10 64.0 82.8 0.866

100 62.9 82.1 0.863

Table 3. Performance of our model with different λcls (weight of
classification loss).

δ Acc5 ↑ Acc10 ↑ SRCC ↑
0 64.6 83.0 0.869

0.1 64.8 83.3 0.872
1 64.2 82.9 0.865

1.5 63.4 82.5 0.864
2 63.1 82.1 0.861

Table 4. Performance of our model with different δ (margin in the
consistency loss).

or too small, the crop pairs selected to train the classifier
may introduce some noise and disturb the classifier to rank
the crops accurately. When increasing the number of crop
pairs P , the performance of the classifier gets higher, but the
growth rate declines dramatically as P > 256. We finally
choose P = 256 for training considering the computational
cost and the performance comprehensively.

Next, we test different values of λcls and δ and report
the cropping metrics of our models. We separately set
λcls = 0.01, 0.1, 1, 10, 100 and δ = 0, 0.1, 0.5, 1, 1.5, 2.
The results are shown in Table 3 and Table 4. We can see
that when λcls = 1 and δ = 0.1, our model has the best
performance and our method is relatively robust to λcls and
δ when setting them in a reasonable range.

5. More Qualitative Comparisons
Firstly, in order to gain an intuition on how each compo-

nent of our model improves cropping results, we show some
examples of GAICD [5] test set using the basic model(row
1 in Table 4 of the main paper) and our proposed method
with only spatial-aware feature component and rank con-
sistency component respectively in Figure 4 and Figure 5.
From left to right in Figure 4, the first image shows that the
basic model cuts through the tree branches which are rep-
resented as semantic edges in the feature maps. However,
our proposed model shifts the crop box to the left to include
the whole branch part, improving the crop score from 3.4
to 4.3 with the help of the spatial-aware feature. The same
phenomenon occurs in the second image. In the third and
fourth images, our model expands the cropping region to in-
clude the salient objects in the images, preventing important



Figure 4. Qualitative comparison on GAICD [5] test set between the basic model(row 1 in Table 4 of the main paper) and our proposed
method with only spatial-aware feature component. The annotated best crops are in yellow, the predicted best crops by the basic model
and our proposed method are in blue and red respectively. The numbers above the images are their predicted scores.

Figure 5. Qualitative comparison on GAICD [5] test set between the basic model(row 1 in Table 4 of the main paper) and our proposed
method with only rank consistency component. The annotated best crops are in yellow, the predicted best crops by the basic model and our
proposed method are in blue and red respectively. The numbers above the images are their predicted scores.

objects from being cut through by the cropping box and the
aesthetic scores are improved through the spatial-aware fea-
ture. In the last image, the predicted crop of our proposed
model shrinks to the left relative to the basic model and cuts
out the non-salient person on the right as a distraction. As
mentioned in the main paper, our proposed model can place
important semantic edges and salient objects in a more ap-
propriate position in the cropping box with the help of the
spatial-aware feature, and try to avoid cutting through or
cutting off them. In Figure 5, the images show the improved
crop results by our proposed model with only rank consis-
tency. With the transferred ranking knowledge, our model
can rank crops more accurately and the aesthetic scores of
predicted best crops are lifted. However, it is hard to re-
strictively summarize the cases in which rank consistency
could improve the cropping results because the ranking is
determined by many complex factors.

Secondly, we show some specific examples where we
pick some images with multiple salient objects from the
GAICD [5] test set and observe how our model improves
the cropping results for such images. From left to right in
Figure 6, the first one shows that the crop of our method
preserves the two birds and the outline of the mountain as
much as possible. In the second image, our method does not
cut through the two doors. As in the third one, our method
put the person and the houselet in better place. The last two
images show that our method excludes the distractions(the
tree in the fourth image and the car in the last image). Com-
pared with the basic model, we can see that with the help of
the spatial-aware feature and rank consistency, our model
improves the ability to deal with multi-salient objects crop-

ping situations.
In the end, we show some more qualitative results be-

tween our proposed method and other state-of-the-art meth-
ods on GAICD [5] dataset and FCDB [1] dataset. Similar
to Section 4.3 in the main paper, we show top-1 crops ob-
tained by VFN [2], VEN [4], VPN [4], CGS [3], GAIC [5],
and our method. On the GAICD test set, we use the pre-
defined anchor boxes [5]. As for the FCDB dataset, we use
the pre-defined sliding windows as candidate crops. We se-
lect the top-1 predicted crop as the best crop. The results
on the two datasets are shown in Figure 8 and Figure 9 re-
spectively. We can find that on both datasets, our method is
able to generate more appealing crops that are closer to the
ground-truth than other approaches.

6. Failure Cases

As discussed in Section 5 in our main submission, al-
though our method can produce visually appealing crops,
there still exist some failure cases. In Figure 7, we show
some images in GAICD [5] test set whose predicted top-1
crops (red box) are far from their ground-truth top-1 crops
(yellow box).

We observe that when cropping the images of landscape,
our model tends to generate broad views that preserve most
of the scene. For relatively complex scenes, our model tends
to include more semantic edges and salient objects com-
pared with other methods. As shown in Figure 7, in the first
two images, our method chooses the largest anchor box as
the best one that encloses lines and objects as many as pos-
sible and cuts out distractions little. In the third image, the



Figure 6. Qualitative comparison on images with multiple salient objects from GAICD [5] test set between the basic model(row 1 in Table
4 of the main paper) and our whole model. We present the images with their annotated best crops in yellow, predicted best crops by the
basic model in blue, and predicted best crops by our proposed method in red. The predicted scores of our whole model are higher than
those of the basic model.

Figure 7. Some failure cases in GAICD [5] test set. We present the images with their annotated best crops (yellow bounding box) and the
predicted best crops (red bounding box) by our method.

predicted crop preserves almost all the shoreline while the
annotated crop cuts through the shoreline at the right bot-
tom corner. The last image contains a relatively complex
scene and the predicted crop also encloses some distrac-
tions including the sunshade and the miniature tree. One
possible explanation is that the spatial-aware feature in our
cropping model improperly penalizes the crops which cut
through thus semantic edges and salient objects.
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Figure 8. More qualitative comparison on GAICD [5] test set. We show the annotated best crop (yellow bounding box) in the source image
in the left column and top-1 crops obtained by different methods in the rest of the columns.

Figure 9. More qualitative comparison on FCDB [1] test set. We show the annotated best crop (yellow bounding box) in the source image
in the left column and top-1 crops obtained by different methods in the rest of the columns.


