
Appendix

A. Additional Implementation Details

In this section, we provide additional details of the data
preparation and pose-processing for different tasks. PyTorch-
style pseudo-code is provided to better illustrate the imple-
mentation details. They can be done with a few operations
in implementation. For each task, Painter doesn’t involve
more complex post-processing compared to the specialist
methods.

Semantic segmentation As described in Section 3.1 of the
main paper, we formulate different semantic categories using
different colors in RGB space. To this end, we define the
background and ignore areas as black, i.e., pixels in color
(0, 0, 0), and generate the colors for foreground categories
using the pseudo-code elaborated in Figure S1.

During inference, to decode the output image to a single-
channel ID map where each pixel represents a class ID, we
compute the L1 distance between each output pixel and the
pre-defined colors for each semantic category, and take the
ID of the closest color as the predicted category. The pseudo-
code for the post-processing is illustrated in Figure S2.

def generate colors dict(b, K):
# b: the number of used values in a single channel
# K: the number of classes

m = 255 // b # get margin
colors = []
for class id in range(K):

# compute margin multiplier
r mult = class id // b∗∗2
g mult = (class id % b∗∗2) // b
b mult = class id % b
# compute r, g, b values
r = 255 − r mult ∗ m
g = 255 − g mult ∗ m
b = 255 − b mult ∗ m
colors.append((r, g, b))

return colors

Figure S1. Pseudo-code for generating colors. //: floor division;
%: mod operation.

def forward(image, colors):
# image: (H, W, 3)
# colors: (K, 3), where K is the number of classes

# get distance between pixels and pre−defined colors
dist = (image.view(H, W, 1, 3) − colors.view(1, 1, K, 3)

).abs().sum(−1) # (H, W, K)
segm = dist.argmin(dim=−1) # (H, W)

return segm

Figure S2. Pseudo-code of semantic segmentation post-processing.

Keypoint detection For keypoint detection, the output image
consists of the R channel which denotes the class-agnostic
heatmaps and the G/B channels that represent the keypoint
categories. As illustrated in Figure S3, we convert the output
image to a 17-channel heatmap, and follow the commonly
used post-processing [39, 46] to obtain the final keypoint
locations.

def forward(image, colors):
# image: (H, W, 3)
# colors: (K, 3), where K is the number of keypoints

# r for heatmaps and gb for keypoint classes
r = images[..., 0] # (H, W)
gb = images[..., 1:] # (H, W, 2)

# get keypoint class of each pixel
dist = (gb.view(H, W, 1, 2) − colors.view(1, 1, K, 2)).

abs().sum(−1) # (H, W, K)
segm = dist.argmin(dim=−1) # (H, W)

for idx in range(K):
mask = segm == idx
heatmap = mask ∗ r # (H, W)
heatmaps.append(heatmap)

heatmaps = stack(heatmaps) # (K, H, W)

return heatmaps

Figure S3. Pseudo-code of keypoint detection post-processing.
stack: concatenates a sequence of tensors along a new dimension.

Panoptic segmentation As described in Section 3.2, we
decompose the panoptic segmentation task into semantic
segmentation and class-agnostic instance segmentation. Dur-
ing training, the semantic segmentation sub-task uses the
same setting as the semantic segmentation on ADE-20K [54],
except that we set the base b = 7 when assigning colors. Sim-
ilar to the color generation process of semantic segmentation,
we generate colors for each location category [42] used in
class-agnostic instance segmentation. The color of each
instance mask is determined by the location of its center.

During inference, the semantic ID map can be obtained
using the post-processing described in Figure S2, while the
class-agnostic instance masks are generated by thresholding
the distance between predicted colors and the pre-defined
colors for location categories. Matrix NMS [43] is adopted
to remove duplicate instance predictions. We apply the ma-
jority vote of pixels from the semantic prediction to get
the semantic class for each instance mask, as illustrated in
Figure S4. Finally, we follow Panoptic FPN [26] to merge
the semantic segmentation and the instance segmentation
predictions to obtain the panoptic segmentation results.

Image restoration The detailed statistics of the datasets that
are used for image restoration are shown in Table S1.



Tasks Deraining Enhance. Denoising

Datasets Rain14000 [15] Rain1800 [49] Rain800 [53] Rain100H [49] Rain100L [49] Rain1200 [52] Rain12 [29] LoL [45] SIDD [1]
Train Samples 11200 1800 700 0 0 0 12 485 320
Test Samples 2800 0 100 100 100 1200 0 15 40

Testset Rename Test2800 - Test100 Rain100H Rain100L Test1200 - - -
Table S1. Dataset description for image restoration tasks.

(a) Patch merging

merging? mIoU mAcc

✗ 39.7 51.1
✓ 41.2 53.0

(b) Encoder

backbone mIoU mAcc

ViT-B 31.4 41.4
ViT-L 41.2 53.0

(c) Head type

head mIoU mAcc

linear 38.6 50.2
light 41.2 53.0

(d) Loss function

loss mIoU mAcc

ℓ1 40.6 52.5
ℓ2 26.3 37.7

smooth-ℓ1 41.2 53.0

Table S2. Ablation study on ADE-20K semantic segmentation. (a) merging patch after three transformer blocks; (b) encoder; (c) head type;
(d) loss function.

def forward(segm dist, inst masks):
# segm dist: (H, W, K), where K is the number of thing

classes
# inst masks: (N, H, W), where N is the number of

instances

# turn distances to scores
segm scores = 1. − semseg dist / max(semseg dist)
# majority vote
class probs = einsum("nhw,hwk−>nk", inst masks,

segm scores) # (N, K)
pred classes = class probs.argmax(dim=−1) # (N,)

return pred classes

Figure S4. Pseudo-code of majority voting for labeling each in-
stance mask. einsum: Einstein summation.

B. Additional Results

We report the results of ablation experiments on several
components of our framework, with a shorter schedule of 3k
iterations and other hyper-parameters unchanged on seman-
tic segmentation of ADE-20K.

Merging patches During training, each input sample con-
sists of both the input image and output image, which results
in high memory cost and significantly slows down the train-
ing process. We reduce nearly half of the computation costs
by merging the early features of the input image and the
output image, i.e., adding their features patch by patch after
a three blocks. Table S2a shows that this new design even
incurs performance increase. We argue that this design fur-
ther provides the pixel-to-pixel correspondence between the
input and its output via stacking them together. But in the
original setting, these relationships need to be learned by
the model, which will make the optimization more difficult
especially in a short schedule.

Figure S5. More visualizations. The visualized tasks include
keypoint detection, object segmentation and instance segmentation
on potato, bee, and tomato.

Encoder We adopt standard Vision Transformer (ViT) [14]
with different model sizes as the encoder, including ViT-base
and ViT-large. Results are shown in Table S2b. We find that
the model with ViT-L outperforms that with ViT-B by very
large margins. This observation is intuitive, that generally
larger models yield better performance. For generalist mod-
els, they can use more data but with less task-specific prior
on method design, thus may require more model capacity
than task-specific models.

Head We use a light three-layer head that consists of a
linear (1×1 convolution) layer, a 3×3 convolution layer,
and another linear layer, to map the feature of each patch
to its original resolution, e.g., 16 × 16 × 3. The feature of



COCO-SemNYUv2-Depth COCO-Pose COCO-Ins Denoising

Figure S6. Visualizations of the learned prompts for different tasks. Each column denotes a prompt pair for a task. The first and second rows
are input and output images respectively. For visualization, each prompt is normalized to an RGB image with values between 0 and 255.
Different tasks show different patterns. Users can take the prompt images and feed them to the Painter model to enable the corresponding
application.

each patch is the concatenation of the 4 feature maps evenly
sampled from the transformer blocks. As shown in Table S2c,
the light head achieves clear gains over the baseline with
only a linear layer.

Loss function Painter uses a simple pixel regression loss
to learn all the tasks. In Table S2d, we compare different
regression loss functions, including ℓ1, ℓ2, and smooth-ℓ1.
We adopt smooth-ℓ1 by default as it achieves the best perfor-
mance and is also more stable during training.

C. Additional Visualization
In this section, we provide more visualizations. As shown

in Figure S5, Painter performs in-context inference accord-
ing to different prompt images. Note that Painter is never
trained to solve these tasks during training, e.g., keypoint
detection of potato, object segmentation of bee, and instance
segmentation of tomato.


