
Appendix
A. Theorems and Proofs
A.1. Proof of Theorem 3

Theorem 3 If P = N (0,�2
0), and Q is also a product of univariate Gaussian distributions, then the minimum of Eq. 4 w.r.t

Q can be bounded by
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Proof. Before we begin our proof, we emphasize that the posterior Q that minimizes the test loss may not be the same
posterior Q that minimizes the training loss. Namely, define

Qtest
def
= argmin

Q
E✓2QR(✓,D)

Qtrain
def
= argmin

Q
{E✓2QR̂(✓, D

m
) +
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�
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then Qtest may not be equal to Qtrain. However, the following inequality clearly holds based on their definitions,

E✓2QtestR(✓,D)  E✓2QtrainR(✓,D)  E✓2QtrainR̂(✓, D
m
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KL(Q||P) + C(⌧,�,m).

Generally speaking, it is impossible to directly find Qtest without knowing the true data distribution D. Thus, Theorem 3
attempts to derive Qtrain to minimize the RHS of Eq. 4. When it is clear which optimal posterior, i.e. Qtrain instead of
Qtest, we can derive in the theorem, we omit the subscription and directly write Q.

Proof Overview. Based on our assumptions, we write Q = N (✓,⌃) where ⌃ is the (diagonal) covariance matrix. The
minimization of the bound w.r.t Q is to minimize the bound w.r.t ⌃ and ✓. Our proof is therefore three-fold: (1) firstly,
we write the expression of KL(Q||P ) using ✓ and ⌃; (2) secondly, we use a second-order Taylor expansion to decompose
E✓2QR̂(✓, D

m
) into terms as functions of ⌃ and ✓; and (3) finally, we minimize the bound w.r.t ⌃ for two cases: all weights

have the same or different variances. Namely, the diagonal of ⌃ has the same or different elements. At the end of the
minimization w.r.t ⌃, we arrive at the bound that requires to minimize ✓ to actually minimize the RHS. Our proof follows
below.

Extra Notations. Throughout the proof we will use N for the total number of weights, i.e. the cardinality of ✓. When
indexing a particular weight, we write ✓n. Let the diagonal of ⌃ be �2

= [�
2
1 ,�

2
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N ]

>, i.e. the variance of each weight.
We use Diag(a) to denote the diagonal matrix where the the diagonal is the elements from vector a.

Step I: the KL term KL(Q||P). The expression of the KL term KL(Q||P) when P = N (0,�2
0I) is as follows,
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(when ⌃ is a diagonal matrix). (8)



Step II: Second-order Taylor’s Expansion for E✓2QR̂(✓, D
m
). We expand E✓2QR̂(✓, D

m
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re-parameterization trick,
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where � is the element-wise product, a.k.a the Hadamard product. Notice the connection between a vector product and
Hadamard product:

for any vectors a, b, a � b = Diag(a)b. (10)

Using Eq. 10, we simplify Eq. 9 as follows,
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Step III: Bound Minimization. Using Eq. 8 and 11, we re-write the bound in Theorem 2 as follows
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There are two sets of parameters in Eq. 12 for bound minimization: ⌃ (i.e. the �2) and ✓. To minimize w.r.t ⌃, strictly
speaking it requires minimizing all relevant terms and the higher-order terms in O(�

4
), which is clearly infeasible. Instead,
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In the following, we discuss two cases of �2
n.

Case I (Spherical Gaussian): 8n,�2
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2
q . In this case, the solution to the problem above is to take the derivative w.r.t.
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Substituting each �2
n with �⇤2
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Substituting �2
n with �2⇤

n in Eq. 12 gives the solution to the following problem
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Similar to Case I, we take Taylor’s Expansion of log(1 + x) so
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Finding a Point Estimator using Theorem 3 Theorem 3 derives an upper-bound for the expected generalization error over
the posterior distribution Q, i.e. E✓⇠DR(✓,D), instead of an upper-bound for the generalization error at a single point ✓, i.e.
R(✓,D) for practical use. Nevertheless, the resulting bound from Theorem 3 is a good proxy for analyzing the generalization
gap for R(✓,D) at ✓⇤ = argmin✓ {Eq. 5}. To see this, recall that the optimal variance �2⇤

n of Q appears in Eq. 14 (or Eq. 13
for Case I), which is equivalent to the following
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Since � is proportional to the number of data examples m, the variance �2⇤
n becomes very small for any reasonably sized

datasets (e.g. m = 60K in CIFAR, m = 1M in ImageNet). The resulting posterior Q, in practice, is a “narrow” Gaussian.
So one can simply take its optimal mean ✓⇤ as a point estimator of the true posterior.

A.2. Proof of Theorem 4
Theorem 4 Suppose that g✓ is a feed-forward network with ReLU activation. For the i-th layer, let W (i) be its weight and
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First, we derive the first-order derivative. The following steps are based on the chain rule:
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Notice that the first-order derivative of ReLU is either 1 or 0, so we have plenty of identity functions in {g✓(x)}k
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Eq. 16 simplifies the expression of the second-order derivative w.r.t W (i�1)
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so we have the following clean expression:
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We plug Eq. 18 back to Eq. 15 and arrive
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Notice that the transition from Eq. 19 to Eq. 20 is because 8k, hk(x, ✓) > 0. Thus, we find
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For each layer i, we denote H(i)
max = maxk,di{H
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The squared term can be further bounded by using the chain rule, namely,
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Recall that our goal is to bound H
(i)
max. By definition, we take the max on both sides over di and k (although the class

dimension is already gone). The direction of the inequality still holds because quantities on both sides are all non-negative.
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The last term inside the square is the definition of the `1 operator norm so we directly write
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A.3. Derivations of Propositions
Proposition 1 Given a training dataset Dm and the adversarial input example x

0 for each example x, the top-layer TrH of
the AT loss (Definition 1) is equal to
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Let x0 be an adversarial example, namely
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The transition to Eq. 22 uses the standard form of the gradient of Cross Entropy loss with the softmax activation. To compute
the trace of a Hessian, we can skip the cross terms in Hessian (e.g. Owj1k,wj2kR) because they are not on the diagonal of the
matrix. Thus, we are only interested in O
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Eventually, to compute the trace of Hessian matrix we sum all diagonal terms so that
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2 · 1

>
h(x

0
, ✓)

and we denote Tr(O
2
wjk

R) as TrHAT(x
0
; ✓) to complete the proof.

Proposition 2 Under the same assumption as in Proposition 1, the top-layer TrH of the TRADES loss (Def’ 2) is equal to

Tr(O
2
✓tR̂T(✓, D

m
)) =

1

m

X

(x,y)2Dm

TrHT(x, x
0
;�t, ✓),

where, TrHT(x, x
0
;�t, ✓) = ||f✓b(x)||

2
2 · 1

>
h(x, ✓) + �t||f✓b(x

0
)||

2
2 · 1

>
h(x

0
, ✓).

Before we start our proof of this proposition, we introduce the following useful lemmas.

Lemma 1 Let s(g) be the softmax output of the logit output g computed at input x, then

@s(g)

@g
= � = diag[s(g)]� s(g) · {s(g)}

> (23)

where diag(v) returns an identity matrix with its diagonal replaced by a vector v.

Proof.

@s(gi)

@gk
= s(gi)(I [i = k]� s(gk)),�ik = s(gi) · I [i = k]� s(gi)s(gk) =)

@s(g)

@g
= �.



Lemma 2 Let log s(g(x)) be the log softmax output of the logit output g computed at input x, then

@ log s(g(x))

@g(x)
=  = I � 1 · {s(g(x))}

>

where I is the identity matrix.

Proof.

@ log s(gi)

@gk
= I [i = k]� s(gk), ik = I [i = k]� s(gk) =)

@s(g)

@g
=  .

Now we are ready to present our proof of the Proposition 2.
Proof. We write the expression of R̂T(✓, D

m
) based on as Definition 2.

R̂T(✓, D
m
)

def
=

1

m

X

(x,y)2Dm

h
CE((x, y), g✓) + �t · max

||✏||p�
KLloss((x, x+ ✏), g✓)

i
,

where KLloss((x, x+ ✏), g✓) = KL(s(g✓(x))||s(g✓(x+ ✏)). Thus, we can compute the trace of Hessian on the top layer for
the CE loss and the KL loss, respectively. Namely, we derive O2

✓t
[CE((x, y), F✓)] and O

2
[max||✏||p� KLloss((x, x+✏), F✓)].

First, we see that the expression of O2
✓t
[CE((x, y), F✓)] is similar to the result in Proposition 1 by replacing the adversarial

input with the clean input. With this similarity, we directly write

Tr{O
2
✓t [CE((x, y), F✓)]} = ||f✓b(x)||

2
2 · 1

>
h(x, ✓). (24)

Second, by denoting

x
0
= arg max

||✏||p�
[KLloss((x, x+ ✏), F✓)] + x,

the rest of the proof now focuses on deriving O
2
✓t
[KLloss((x, x

0
), F✓)] where

KLloss((x, x
0
), F✓) = �

X

i

s(gi) log(s(g
0
i)) +

"
X

i

s(gi) log(s(gi))

#
, gi = {✓

>
t f✓b(x)}i, g

0
i = {✓

>
t f✓b(x

0
)}i.

For the ease of the notation, let w def
= ✓t so wjk

def
= {✓t}jk and let K def

= KLloss((x, x
0
), F✓). To find O

2
✓t
K, we first write the

first-order derivative of K with respect to w,

@K

@wjk
= �

X

i

s(gi)
@

@g0k
[log(s(g

0
i))]

@g
0
k

@@wjk
+

X

i

@K

@s(gi)

@s(gi)

@gk

@gk

@@wjk
| {z }

gradient through gk

. (25)

Next, we discuss two cases depending on whether or not we stop gradient on g (the logit output of the clean input) in Eq. 25.
In Case I where the gradient on g is stopped, the second term of Eq. 25 will vanish. This leads to a simpler but practically
more stable objective function.

Case I: Stop Gradient on g. In this case,

@K

@wjk
= �

X

i

s(gi)
@

@g0k
[log(s(g

0
i))]

@g
0
k

@@wjk

= {f✓b(x
0
)}j(s(g

0
k)� s(gk)). (26)

By comparing Eq. 26 with Eq. 22 and treating s(gk) as constants, we can quickly write out the second-order derivative as

@
2
K

@w2
jk

= {f✓b(x
0
)}

2
j (s(g

0
k)� s

2
(g

0
k)).



Recalling h(x
0
, ✓) = s(g

0
)� s

2
(g

0
), therefore,

Tr{O
2
✓t [KLloss((x, x

0
), F✓)]} = Tr{O

2
✓tK} =

X

jk

@
2
K

@w2
jk

= ||f✓b(x
0
)||

2
2 · 1

>
h(x

0
, ✓). (27)

Finally, we combine Eq. 24 and 27 to arrive at

Tr

n
O

2
✓t

h
CE((x, y), g✓) + �t · max

||✏||p�
KLloss((x, x+ ✏), g✓)

io
= ||f✓b(x)||

2
2 · 1

>
h(x, ✓) + �t||f✓b(x

0
)||

2
2 · 1

>
h(x

0
, ✓),

where x
0
= arg max

||✏||p�
[KLloss((x, x+ ✏), F✓)] + x

By denoting TrHt(x, x
0
;�t, ✓)

def
= Tr

n
O

2
✓t

h
CE((x, y), g✓)+�t ·max||✏||p� KLloss((x, x+✏), g✓)

io
, we complete the proof

for this case and this is the statement shown in Proposition 2.

Case II: With Gradient on g. We restart our derivation from Eq. 25 and expand the first term as follows

@K

@wjk
= {f✓b(x

0
)}j(s(g

0
k)� s(gk)) +

X

i

@K

@s(gi)

@s(gi)

@gk

@gk

@@wjk
.

Here

X

i

@K

@s(gi)

@s(gi)

@gk

@gk

@@wjk
= �{f✓b(x)}j

X

i

@s(gi)

@gk
log s(g

0
i) + {f✓b(x)}j

X

i


@s(gi)

@gk
log s(gi) + s(gi)

@ log s(gi)

@gk

�

Using Lemma 1 and 2, we write

@s(gi)

@gk
= �ik,

@ log s(gi)

@gk
=  ik, �ik = s(gi) ik

and

X

i

@K

@s(gi)

@s(gi)

@gk

@gk

@@wjk
= �{f✓b(x)}j

X

i

�ik log s(g
0
i) + {f✓b(x)}j

X

i

[�ik log s(gi) + �ik] .

Therefore, the first-order derivative of K with respect to wjk is

@K

@wjk
= {f✓b(x

0
)}j(s(g

0
k)� s(gk))� {f✓b(x)}j

X

i

�ik log s(g
0
i) + {f✓b(x)}j

X

i

[�ik log s(gi) + �ik]

= {f✓b(x
0
)}js(g

0
k)| {z }

K0

�{f✓b(x
0
)}js(gk)| {z }

K1

�{f✓b(x)}j

X

i

�ik log s(g
0
i)

| {z }
K2

+ {f✓b(x)}j

X

i

[�ik log s(gi) + �ik]

| {z }
K3

.

To calculate the seconder-order derivative of K w.r.t wjk, we find the derivative of K 0
,K1,K2,K3 w.r.t wjk, respectively.

(1) Derivative of K 0. K
0 is simply the result we have already obtained in Case I (see Eq. 26); therefore,

@K
0

@wjk
= {f✓b(x

0
)}

2
j (s(g

0
k)� s

2
(g

0
k)).

Thus,

Tr(
@K

0

@wjk
) = ||f✓b(x

0
)||

2
2 · 1

>
h(x

0
, ✓).



(2) Derivative of K1.

@K1

@wjk
= �{f✓b(x

0
)}j{f✓b(x)}j

@s(gk)

@gk

= �{f✓b(x
0
)}j{f✓b(x)}j�kk

= �{f✓b(x
0
)}j{f✓b(x)}j(s(gk)� s

2
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Thus,

Tr(
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) = �

X
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0
)}j{f✓b(x)}j(s(gk)� s

2
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= �f✓b(x
0
)
>
f✓b(x) · 1

>
h(x, ✓)

(3) Derivative of K2.

@K2

@wjk
= �{f✓b(x)}j

X
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@�ik

@gk

@gk

@wjk
log s(g

0
i) + �ik

@ log s(g
0
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0
k

@wjk

�
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@�ik

@gk
{f✓b(x)}j log s(g

0
i) + �ik 

0
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0
)}j

�

Notice that

i = k =)
@�ik

@gk
=
@�kk

@gk
=

@

@gk
(s(gk)� s

2
(gk)) = �kk � 2s(gk)�kk;

and i 6= k =)
@�ik

@gk
=

@

@gk
(�s(gi)s(gk)) = �2s(gi)�kk.

Thus,

@�ik

@gk
= �kk(I[k = i]� s(gi)) = �kk{ 

>
}ik = �kk ki.

As a result,

@K2

@wjk
= �{f✓b(x)}j

X

i

[�kk ki{f✓b(x)}j log s(g
0
i) + �ik 

0
ik{f✓b(x

0
)}j ]

= �{f✓b(x)}
2
j�kk

X

i

 ki log s(g
0
i)� {f✓b(x)}j{f✓b(x

0
)}j

X

i

�ik 
0
ik

= (�{f✓b(x)}
2
j�kk)( k · log s(g

0
))� {f✓b(x)}j{f✓b(x

0
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>
}k · { 
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Thus,
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) =

X
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⇥
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2
j�kk)( k · log s(g

0
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>
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>
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0
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>
!
0
,

where  0
,!

0 are vectors such that  0
k =  k · log s(g

0
),!

0
k = {�

>
}k · { 

0>
}k.



(4) Derivative of K3.

@K3

@wjk
= {f✓b(x)}j

X
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@�ik

@gk

@gk

@wjk
log s(gi) + �ik
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@wjk
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2
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>
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2
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⇥
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>
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>
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⇤
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Thus,
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X
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⇥
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2
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⇥
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>
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>
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Finally, we have

Tr(
@
2
K

@w2
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) = Tr
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+
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+
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+
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2
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>
h(x

0
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where
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0
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0
)
>
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>
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0
)
>
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>
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>
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We arrive at
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n
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2
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h
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||✏||p�
KLloss((x, x+ ✏), g✓)
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>
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0
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2
2 · 1

>
h(x

0
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0
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where

x
0
= arg max

||✏||p�
[KLloss((x, x+ ✏), F✓)] + x

Finally, we complete the derivation by denoting TrHt(x, x
0
;�t, ✓)
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= Tr

n
O

2
✓t

h
CE((x, y), g✓) + �t ·

max||✏||p� KLloss((x, x+ ✏), g✓)

io
.



B. TrH Regularization for Other Adversarial Losses
In this section, we apply TrH regularization to some additional robust losses other than AT or TRADES.

B.1. ALP [29]
Similar to TRADES, Adversarial Logit Pairing (ALP) [29] is another method that pushes points away from the decision

boundary by regularizing the `2 difference between the clean and the adversarial softmax outputs. Formally, ALP minimizes
the following loss during training,

R̂A(✓, D
m
)

def
=

1

m

X

(x,y)2Dm

CE((x
0
, y), g✓) + �A||s(g✓(x))� s(g✓(x

0
))||

2
2

where x
0
= x+ arg max

||✏||p�
CE((x+ ✏, y), g✓).

We hereby derive TrH regularization for R̂A(✓, D
m
). Using Proposition 1, we know that

TrH(CE((x
0
, y), g✓)) = ||f✓b(x

0
)||

2
2 · 1

>
h(x

0
, ✓).

The rest of this section will focus on the `2 distance loss,

S
def
= ||s(g✓(x))� s(g✓(x

0
))||

2
2 =

X

i

(s(gi)� s(g
0
i))

2
, (29)

where g = g✓(x), g
0
= g✓(x

0
). To compute Tr(O

2
✓t
S), we need to re-use Lemma 1 and 2 to obtain the derivatives of the

softmax and log-softmax outputs, i.e.

@s(g✓(x))

g✓(x)
= �
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= Diag(s(g✓(x)))� s(g✓(x)) · s(g✓(x))

>
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@ log s(g✓(x))

g✓(x)
=  

def
= I � 1 · s(g✓(x))

>
,

as well as

@�ik

@{g✓(x)}k
= �kk ki.

For the ease of notation, we let w def
= ✓t be the weights of the top-layer. Now we are ready to write the first-order derivative of

S w.r.t wjk as follows

@S
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0
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The second-order derivative is equal to
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0
)}j
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0
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2
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0
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0
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0
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2
j ). (30)

Similar to TRADES, if one stops gradients over the clean logit g, then Eq. 30 can be simplified as,
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Therefore, the trace of Hessian is equal to,

Tr(O
2
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⇣
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2 � �
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2
2 � �

0
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0
k)

⌘
.

If the gradient over g is kept, then one can sum over the feature dimension j and the class dimension k in Eq. 30. To put
together, the TrH regularization term for ALP is given as follows:

1

m

X

(x,y)2Dm

||f✓b(x
0
)||

2
2 · 1

>
h(x

0
, ✓) + �A · Tr(O

2
✓tS).

B.2. MART [46]
In [46], Wang et al. proposed MART as a robust training loss that focus more on points that are not classified correctly.

Different from AT, TRADES and ALP, MART explicitly aims to increase the margin between the top prediction and the
second best candidate. In what follows we provide the TrH regularization for MART. We denote the MART loss as R̂M,
which contains two components: a boosted Cross-Entropy (BCE) loss and a weighted KL-Divergence (WKL),

R̂M(✓, D
m
)

def
=

1

m

X

(x,y)2Dm

BCE((x
0
, y), g✓) + �mWKL((x, x

0
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0
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0
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0
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x
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= x+ arg max
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CE((x, y), ✓). (31)

First, we derive TrH of the BCE loss with respect to the top-layer weights ✓t,
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Using intermediate steps from the proof of Proposition 2 in Appendix A, we have that
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In order to compute Tr(O
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)})]), we make use of Lemma 1 and 2 to obtain the derivatives of

the softmax and log-softmax outputs,
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Let us denote K = � log(1�max 6=y s({g✓(x
0
)})] and w = ✓t for the ease of notation. Then the first-order derivative of

K w.r.t. wjk is,
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The second-order derivative is,
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Next, we derive the trace of Hessian for WKL loss. Similarly to before, by stopping the gradient over the clean logit g✓(x),
the trace of Hessian of WKL will be the same as the KL loss used in TRADES, which has been shown in Proposition 2.
Namely, in this case

Tr(O
2
✓tWKL) = ||f✓b(x

0
)||

2
2 · 1

>
h(x

0
, ✓).

On the other hand, if the gradient on g✓(x) is computed, there is an additional term in Tr(O
2
✓t
WKL) (similar but more

complicated than G(x, x
0
; ✓) derived in the proof of Proposition 2 in Appendix A), which we will leave as future work.

Finally, we present the TrH regularization for MART as follows,

TrHM(x, x
0
;�m, ✓) = Tr(O

2
✓tBCE) + �mTr(O

2
✓tWKL).

This concludes our derivations of the TrH regularization for the MART loss.



Figure 4. Visualization of Two Moons dataset. The task is to classify the points into two classes (red and green).

C. Impact of Top-Layer Regularization
In this section, we provide a full description of Example 1, as well as some additional results and analysis.

• Dataset. We use the Two Moons Dataset where the input features xi 2 R2 and the label yi 2 {0, 1} (Figure 4).

• Network. We use a dense network Dense(100)-ReLU-Dense(100)-ReLU-Dense(2).

• Training without Regularization (Standard). We train the network with AT(base), such that it is robust in an `1
ball of size 0.02 with 1 PGD step. We use a momentum-SGD with learning rate 0.1 for 100 epochs.

• Training with Top TrH Regularization (Top). We further add the TrH of the top layer as a regularization term in the
loss. We compute the TrH at the top layer using Proposition 1. The regularizing coefficient for the top-layer TrH is 0.5
(i.e. loss = AT + 0.5 ⇤ TrHtop) as we find it needs a stronger penalty due to the lack of TrH from other layers.

• Training with Full TrH Regularization (Full). In additional to the Standard setup, we add the TrH of the full network
as a regularization term in the loss. We numerically compute the Hessian and its trace. The regularizing coefficient for
the full-network TrH is 0.05 (i.e. loss = AT + 0.05 ⇤ TrHfull).

Figure 5, shows pairs of plots of the sum and standard deviation of the eigenvalues of the Hessian matrix across all
layers, as well as for each of the three layers separately. We compare the three setting (1) no regularization (Standard, blue);
(2) the top-layer TrH regularization (Top, orange); and (3) the full-network TrH regularization (Full, green).

Focusing on the top-left plot in Figure 5, we see that the TrH decreases across time with standard training (blue), but
at the same time, that full-network and top-layer TrH regularization decrease it even further. In particular, top-layer TrH
regularization is nearly as effective as directly regularizing the TrH for all layers. The standard deviation plots (on the
right side of each TrH plot) show a a decrease in the standard deviation, which implies there is a contraction effect on the
eigenvalues of the Hessian, with both positive and negative values approaching towards 0. This rules out the possibility that
the TrH reduction comes from an increase in the magnitude of the negative eigenvalues. In fact, TrH regularization effectively
contracts the magnitude of all eigenvalues and leads to a smoother region in the loss surface.

We further plot the TrH and standard deviation of Hessian eigenvalues for each individual layer respectively (where Layer
3 is the top layer). Except for the first layer, whose eigenvalues seem to be small from the onset, the eigenvalue contraction
effect is evident as training progresses, with a stronger and similar effect for both TrH regularization settings.



All Layers Layer 1 

Layer 2 Layer 3 

Figure 5. The figure shows pairs of plots for the sum and the standard deviation of the Hessian matrix eigenvalues. The top-left pair
corresponds to the Hessian of all layers, while the rest to each of the three layers separately, with Layer 3 being the top layer (note that the
sum of eigenvalues is exactly the trace of Hessian). As can be seen on the top-left , the sum and standard deviation decrease in standard
training (blue) and moreover, this effect is amplified by direct TrH regularization with similar results for full network regularization (green)
and top-layer regularization (orange). This similarity can be explained by our Thm.4

Pre-Selected Hyper-parameters (CIFAR-10/100)

Parameter Reason To Select Final Frozen Value

img size to be compatible with ✏ 32⇥ 32
patch size same as [33] 4⇥ 4
parameter init publicly available ImageNet21K checkpoint
batch size memory 768
warm up iterations standard 500

Pre-tuning Stage

Parameter Range Explanation Final Frozen Value

optimizer {‘sgd+momentum’, ‘adam’} optimizer sgd+momentum
base lr {0.001, 0.01, 0.1} initial learning rate 0.1
l2 reg {0, 0.0001, 0.001} coefficient for L2 regularization 0
data aug {‘fb’, ‘crop’} data augmentation method ‘fb’

‘fb’: flip and random brightness
‘crop’: randomly crop and upsample

downsample {‘cubic’, ‘nearest’, ‘bilinear’ } downsample method for the first kernel to cubic
fit the patch size from 16⇥ 16 to 4⇥ 4 [33]

patch stride {2, 4} the stride to create image patches 2
data range {[�1, 1], [0, 1], ‘centered’} data range centered

‘centered’: 0-mean and 1-std
use cutmix {True, False} whether to use cutmix augmentation False

Table 3. Frozen Hyper-parameters for CIFAR-10 and CIFAR-100 (including DDPM images) in All Experiments.



Pre-Selected Hyper-parameters (ImageNet)

Parameter Reason To Select Final Frozen Value

data range to align with ImageNet21K checkpoint [�1, 1]
img size to be compatible with ✏ 224⇥ 224
patch size standard 16⇥ 16
parameter init publicly available ImageNet21K checkpoint
batch size memory 64
warm up iterations standard 500

Pre-tuning Stage

Parameter Range Explanation Final Frozen Value

optimizer {‘sgd+momentum’, ‘adam’} optimizer ‘sgd+momentum’
base lr {0.001, 0.01, 0.1} initial learning rate 0.01
decay type {‘multistep’, ‘cosine’} the function used to schedule lr decay cosine
l2 reg [0.0001, 0.001] coefficient for `2 regularization 0.0001
data aug {‘fb’, ‘crop’} data augmentation method ‘fb’

‘fb’: flip and random brightness
‘crop’: randomly crop and upsample

use cutmix {True, False} whether to use cutmix augmentation False

Table 4. Frozen Hyper-parameters for ViT-B16 and ViT-L16 to reproduce results in Table. 1.

D. Hyper-parameters Shared by All Methods
Pre-Tuning. Training ViTs can sometimes be challenging due to a large amount of hyper-parameters. For the choice of the
parameters that are shared across different defense methods, e.g. batch size, patch size, training iterations, and etc., we do
a large grid search and choose the parameter setting that produce the best results on TRADES(base) and use it for all the
methods. This step is referred to as pre-tuning and is done per-dataset.

Pre-selected Hyper-parameters. There is a set of hyper-parameters requiring no tuning because they are commonly se-
lected in the literature. In the top of Table 4 and 3, we write down the these parameters and explain the reason for choosing a
particular value.

Tunable Hyper-parameters. In the bottom of Table 4 and 3, we show our choice of hyper-parameters for ImageNet and
CIFAR-10/100, respectively. This includes

• optimizer. We tested a momentum-SGD (sgd+momentum) and an Adam optimizer (adam). We found that
momentum-SGD is more stable in fine-tuning the ViT from a pre-trained checkpoint.

• base lr, warm up iterations and decay type. We linearly increase the learning rate from 0 to the base lr
during warm up iterations. After warm-up, we gradually schedule the learning rate based on the decay type.
We experiment with a multi-step and a cosine decay and find no apparent difference between these two schedulers. In
the end, we choose cosine because it has less hyper-parameters to choose compared to the multi-step one.

• l2 reg. On ImageNet, we find `2 regularization with a penalty of 0.0001 helps the baseline TRADES(base). On
CIFAR-10/100, we find that `2 regularization may not be necessary when using DDPM data.

• cutmix. In both cases we do not find the cut mix augmentation [51] help to improve the results.

• data range. On CIFAR10/100, we find that centered data, i.e. normalizing the data to have 0 mean and (close to)
1 standard deviation, provides better results than scaling the images to [-1, 1] (the range of data used by the pre-trained
checkpoint). We simply subtract the CIFAR images from the average of per-channel mean (0.47) and divide it with the
average of per-channel standard deviation (0.25). For ImageNet, we still use [-1, 1] as the data range. Notice that ✏ ball
needs to be re-scaled for both data ranges describe above. For example, when reporting results on ✏ = 0.031 and using
centered data, we need to use ✏/0.25 as the actual noise bound passed to the attacker. When normalizing the data to
[�1, 1], we need to pass ✏/0.5 to the attacker.



• patch size. The size of the image patch of the input sequence to ViT. 16 ⇥ 16 is the standard size of pre-trained
ViT models on ImageNet21K. Thus, when fine-tuning on ImageNet, we use 16 ⇥ 16. CIFAR images are a lot smaller
compared to ImageNet images. As a result, we use a smaller patch size of 4 ⇥ 4 to produce more patches. Using a
smaller patch size requires some modifications to ViT architecture and we discuss this in detail in Appendix G.

• downsample and patch stride. These are particular to CIFAR images. Please refer to Appendix G for detail.

E. Hyper-parameters for Specific Methods
We fine-tune ViTs after common hyper-parameters are locked after pre-tuning. For all methods, we take 10 PGD steps on

CIFAR-10/100 and 7 steps for ImageNet during the training. We report the best results for each method after trying different
sets of hyper-parameters. This usually involves method-specific parameters. We elaborate what hyper-paramter is tuned as
follows and report the final values used in the experiments in Table 5 (CIFAR-10/100) and 6 (ImageNet).

• base: we use �t = 6 for TRADES training and �t is consistent across all experiments.

• SWA: we use ↵ = 0.995 so that ✓avg  0.995 ⇤ ✓avg + 0.005 ⇤ ✓
(t+1) as this value is used in the literature [21].

Therefore, there is no tuning in SWA.

• S2O: The only parameter that requires tuning is the penalty ↵ of the second-order statistic in Eq 2. In the authors’
implementation, we find 1�↵ is used to balance the regularization with the robust loss (AT or TRADES). These hyper-
parameters are hard-coded in the latest commit f2d037b1 so we directly use their choice of hyper-parameters. Namely,
for AT loss, the finally loss in S2O training is set to

0.9 ⇤AT loss+ 0.1 ⇤ S2O loss

and for TRADES training the final loss is

0.7 ⇤
1

m

mX

i

CE((xi, yi), F✓) + 0.3 ⇤ S2O loss+
�t

m

mX

i

max
||✏i||p�

KLloss((xi, ✏i), F✓).

• AWP: The two hyper-parameters in AWP that requires tuning are  and �awp, where  is the function to measure the
noise added to the weights and �awp is the noise budget. We follow the choice made by Wu et al. [49] to choose  as
the layer-wise `2 norm function so that the noise added to the weights in each layer should no greater than the `2 norm
of the weights multiplied by �awp. Namely, suppose that ⇠(i) is the noise added to a weight matrix W

(i) at layer i, then
we project ⇠(i) such that

||⇠
(i)

+W
(i)
||2

||W (i)||2
 �awp.

For the choice of �awp, we sweep �awp over the interval {0.0001, 0.0005, 0.001, 0.005, 0.01}.

• TrH: The two hyper-parameters in TrH that requires tuning are the `2 weight penalty � and the TrH penalty �. For �,
we find 0.001 as a reasonable choice for CIFAR-10/100 and 0.0001 as a reasonable choice for ImageNet. For �, we
sweep the interval {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01}. Furthermore, we also consider three types
of schedulers: ‘constant’, ‘linear’, ‘multistep(0.1-0.5:0.1)’ for � scheduling. Intuitively, a strong TrH regularization at
the very beginning may lead the model to a flat highland instead of a flat minimum where we get a degenerated model.
Ramping up � to the chosen value allows the model to focus more on accuracy and robustness at the early stage. In
practice, we find that CIFAR10/100 is not sensitive to the choice of the � schedulers; however, ImageNet favors ‘linear’
or ‘multistep’ schedulers over the ’constant’ �.

– ‘constant’. No � scheduling.

– ‘linear’. We ramp up � from 0 to the chosen value from iteration 1 to the end.

– ‘multistep(0.1-0.5:0.1)’. We use 0.01 * � before finishing 10% of the total iterations. We use 0.1 * � after finishing
10% and before 50% of the total iterations. After finishing 50% of iterations, we use �.

1https://github.com/Alexkael/S2O/tree/f2d037b9611f7322783411825099251f7978f54e

https://github.com/Alexkael/S2O/tree/f2d037b9611f7322783411825099251f7978f54e


Fine-tuning Hyper-parameters (CIFAR-10/100, ViT-L16)

Defense Hyper-parameter Range Final Choice Final Choice
(CIFAR-10) (CIFAR-100)

AT(AWP) �awp {0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0005 0.0005
AT(SWA) ↵ - 0.995 0.995
AT(S2O) ↵ - 0.1 0.1
AT(TrH) � {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} 0.00001 0.01

� schedule {‘constant’, ‘linear’, ‘multistep’} ‘multistep’ ‘multistep’
� - 0.001 0.001

TRADES(AWP), �t=6 �awp {0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0005 0.0001
TRADES(SWA), �t=6 ↵ - 0.995 0.995
TRADES(S2O), �t=6 ↵ - 0.3 0.3
TRADES(TrH), �t=6 � {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0001 0.0001

� schedule {‘constant’, ‘linear’, ‘multistep’} ‘multistep’ ‘constant’
� - 0.001 0.001

Fine-tuning Hyper-parameters (CIFAR-10/100, Hybrid-L16)

Defense Hyper-parameter Range Final Choice Final Choice
(CIFAR-10) (CIFAR-100)

AT(AWP) �awp {0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0005 0.0005
AT(SWA) ↵ - 0.995 0.995
AT(S2O) ↵ - 0.1 0.1
AT(TrH) � {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0005 0.0005

� schedule {‘constant’, ‘linear’, ‘multistep’} ‘multistep’ ‘multistep’
� - 0.001 0.001

TRADES(AWP), �t=6 �awp {0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0005 0.0005
TRADES(SWA), �t=6 ↵ - 0.995 0.995
TRADES(S2O), �t=6 ↵ - 0.3 0.3
TRADES(TrH), �t=6 � {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0001 0.0001

� schedule {‘constant’, ‘linear’, ‘multistep’} ‘multistep’ ‘multistep’
� - 0.001 0.001

Table 5. Hyper-parameters used in each defense and the values used to reproduce CIFAR10/100 results in Table. 1.

F. Additional Results
We provide results on CIFAR-10/100 with ViT-B16 in Table 7 and ImageNet with Hybrid-L16 in Table 8. These additional

results are consistent with what we have found in Section 4.2 of the paper: in CIFAR-10/100, TrH is consistently among the
top or silver results; in ImageNet, TrH has significantly advantages over the other baseline methods.

In addition to the run-time comparison on NIVIDA RTX chips in Table 2, we also report the per epoch time on RTX chips
as well as TPUv4 in Table 9. We do not include S2O in the table because its memory usage requires twice as many chips.



Fine-tuning Hyper-parameters (ImageNet, ViT-B16)

Defense Hyper-parameter Range Final Choice (`1) Final Choice (`2)

AT(AWP) �awp {0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0001 0.0001
AT(SWA) ↵ - 0.995 0.995
AT(S2O) ↵ - 0.1 0.1
AT(TrH) � {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0001 0.00005

� schedule {‘constant’, ‘linear’, ‘multistep’} ‘multistep’ ‘linear’
� - 0.0001 0.0001

TRADES(AWP), �t=6 �awp {0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0001 0.0001
TRADES(SWA), �t=6 ↵ - 0.995 0.995
TRADES(S2O), �t=6 ↵ - 0.3 0.3
TRADES(TrH), �t=6 � {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} 0.00005 0.00005

� schedule {‘constant’, ‘linear’, ‘multistep’} ‘linear’ ‘linear’
� - 0.0001 0.0001

Fine-tuning Hyper-parameters (ImageNet, ViT-L16)

Defense Hyper-parameter Range Final Choice (`1) Final Choice (`2)

AT(AWP) �awp {0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0001 0.0001
AT(SWA) ↵ - 0.995 0.995
AT(S2O) ↵ - 0.1 0.1
AT(TrH) � {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0005 0.0005

� schedule {‘constant’, ‘linear’, ‘multistep’} ‘multistep’ ‘linear’
� - 0.0001 0.0001

TRADES(AWP), �t=6 �awp {0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0001 0.0001
TRADES(SWA), �t=6 ↵ - 0.995 0.995
TRADES(S2O), �t=6 ↵ - 0.3 0.3
TRADES(TrH), �t=6 � {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} 0.0005 0.00005

� schedule {‘constant’, ‘linear’, ‘multistep’} ‘multistep’ ‘multistep’
� - 0.0001 0.0001

Table 6. Hyper-parameters used in each defense and the values used to reproduce ImageNet results in Table. 1.

`1(� = 8/255) ViT-B16
SE= ±0.5% CIFAR-10 CIFAR-100
Defense Clean(%) AA(%) Clean (%) AA(%)

AT(base) 87.5 60.3 60.0 30.4
AT(SWA) 86.9 60.4 64.1 33.7
AT(S2O) 86.8 60.4 63.2 31.5
AT(AWP) 87.3 61.3 61.5 32.2
AT(TrH) 88.4 61.5 65.0 33.0

TRADES(base) 85.4 60.8 58.6 30.5
TRADES(SWA) 85.6 60.6 62.7 33.0
TRADES(S2O) 85.9 61.1 63.5 31.5
TRADES(AWP) 84.7 60.1 60.8 32.2
TRADES(TrH) 85.8 61.1 63.8 33.0

Table 7. Additional results for CIFAR-10/100 using ViT-B16. Clean: % of Top-1 correct predictions. AA: % of Top-1 correct predictions
under AutoAttack. A max Standard Error (SE) [44] =

p
0.5 ⇤ (1� 0.5)/m (m as the number of test examples) is computed for each

dataset. The best results appear in bold. Underlined results are those that fall within the SE range of the result and are regarded roughly
equal to the best result.



ImageNet Hybrid-L16
SE= ±0.2% `1(� = 4/255) `2(� = 3.0)

Defense Clean(%) AA(%) Clean (%) AA(%)

AT(base) 72.6 40.7 72.2 40.6
AT(SWA) 72.7 40.4 72.7 40.5
AT(S2O) 72.8 43.6 72.3 40.9
AT(AWP) 67.7 39.4 67.9 40.3
AT(TrH) 75.0 46.2 74.4 45.9
TRADES(base) 79.5 37.6 78.0 38.6
TRADES(SWA) 72.9 40.9 71.3 40.8
TRADES(S2O) 73.8 41.3 72.2 41.2
TRADES(AWP) 66.4 38.8 65.3 40.9
TRADES(TrH) 75.9 45.7 73.3 45.6

Table 8. Addtional Results for ImageNet using Hybird-L16. Clean: % of Top-1 correct predictions. AA: % of Top-1 correct predictions
under AutoAttack. A max Standard Error (SE) [44] =

p
0.5 ⇤ (1� 0.5)/m (m as the number of test examples) is computed for each

dataset. The best results appear in bold. Underlined results are those that fall within the SE range of the result and are regarded roughly
equal to the best result.

Method 8 TPUv4 chips 2 RTX chips
base 2.6 32.3
TrH 2.8 34.2
SWA 3.9 40.4
AWP 5.3 48.1

Table 9. Comparisons of runtime measured by per epoch time. S2O is not included because the memory usage requires twice as many
chips.

G. ViT Architecture
We describe the architectures of Vision Transformers used in our experiments in Section 4.

• ViT-B16 includes 12 transformer layers with hidden size 768, MLP layer size 3072 and 12 heads in the multi-head
attention.

• ViT-L16 includes 24 transformer layers with hidden size 1024, MLP layer size 4096 and 16 heads in the multi-head
attention.

• Hybird-L16 is a hybrid model of a ResNet-50 and a ViT-L16 model. The patches fed into ViT are feature representations
encoded by a ResNet-50 and projected to the Transformer dimensions [14]. Dissimilar to a standard ResNet-50 feature
encoder, Dosovitskiy et al. [14] replaced Batch Normalization with Group Normalization [50] and use standardized
Convolution [37]. Moreover, Dosovitskiy et al. [14] removed stage 4, placed the same number of layers in stage 3
(keeping the total number of layers), and took the output of this extended stage 3 as the input of ViT.

The pretrained ViT-B16 and ViT-L16 checkpoints use patch size 16 ⇥ 16. However, since the images in CIFAR10/100
are of size 32 ⇥ 32, there will be only 4 patches when using the original patch size. Therefore, we downsample the kernel
of the first convolution to produce image patches of 4 ⇥ 4. Among different ways of downsampling we find the cubic
interpolation gives the best results, which is the one chosen in pre-tuning as discussed in Appendix D. Indeed, Mahmood et
al. [33] empirically finds that such down-sampling provides better results for CIFAR10 images. Furthermore, in generating
patches, we also use a stride of 2 instead of 4, because we find using overlapped patches increases the sequence length and
results in better performance.
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