
Supplementary Materials

A. Comprehensive Comparison of Image Clas-
sification Performance

Due to space limitations in the main body of the pa-
per, we present a more comprehensive comparison of image
classification performance in Table A.

B. Detailed Training Settings

In this section, we present the detailed training recipes
for image classification, object detection, and semantic seg-
mentation.

B.1. Settings for Backbone-Level Comparison

ImageNet image classification. The training details of
image classification on ImageNet [18] are shown in Table B,
which are similar to common practices [1,3,7,10] and with
some tweaks. To further explore the capability of our model
and match the large-scale private data used in previous
methods [4, 8, 16], we adopt M3I Pre-training [20], a uni-
fied pre-training approach available for both unlabeled and
weakly-labeled data, to pre-train InternImage-H on a 427
million joint dataset of public Laion-400M [21], YFCC-
15M [22], and CC12M [23] for 30 epochs, and then we
fine-tune the model on ImageNet-1K for 20 epochs. For the
more detailed pre-training settings of InternImage-H, please
refer to M3I Pre-training [20].

COCO object detection. We verify the detection
performance of our InternImage on the COCO bench-
mark [24], on top of Mask R-CNN [25] and Cascade Mask
R-CNN [26]. For fair comparisons, we follow common
practices [3, 6] to initialize the backbone with pre-trained
classification weights, and train these models using a 1×
(12 epochs) or 3× (36 epochs) schedule by default. For 1×
schedule, the image is resized to have a shorter side of 800
pixels, while the longer side does not exceed 1,333 pixels.
During testing, the shorter side of the input image is fixed
to 800 pixels. For 3× schedule, the shorter side is resized
to 480−800 pixels, while the longer side does not exceed
1,333 pixels. All these detection models are trained with
a batch size of 16 and optimized by AdamW [27] with an
initial learning rate of 1× 10−4.

ADE20K semantic segmentation. We evaluate our In-
ternImage models on the ADE20K dataset [28], and initial-
ize them with the pre-trained classification weights. For
the InternImage-T/S/B models, we optimize them using
AdamW [27] with an initial learning rate of 6×10−5, and
2×10−5 for InternImage-X/XL. The learning rate is de-
cayed following the polynomial decay schedule with a
power of 1.0. Following previous methods [3, 6, 10], the
crop size is set to 512 for InternImage-T/S/B, and 640 for

method type scale #params #FLOPs acc (%)
DeiT-S [1] T 2242 22M 5G 79.9
PVT-S [2] T 2242 25M 4G 79.8
Swin-T [3] T 2242 29M 5G 81.3
CoAtNet-0 [4] T 2242 25M 4G 81.6
CSwin-T [5] T 2242 23M 4G 82.7
PVTv2-B2 [6] T 2242 25M 4G 82.0
DeiT III-S [7] T 2242 22M 5G 81.4
SwinV2-T/8 [8] T 2562 28M 6G 81.8
Focal-T [9] T 2242 29M 5G 82.2
ConvNeXt-T [10] C 2242 29M 5G 82.1
ConvNeXt-T-dcls [11] C 2242 29M 5G 82.5
SLaK-T [12] C 2242 30M 5G 82.5
HorNet-T [13] C 2242 23M 4G 83.0
InternImage-T (ours) C 2242 30M 5G 83.5
PVT-L [2] T 2242 61M 10G 81.7
Swin-S [3] T 2242 50M 9G 83.0
CoAtNet-1 [4] T 2242 42M 8G 83.3
PVTv2-B4 [6] T 2242 63M 10G 83.6
SwinV2-S/8 [8] T 2562 50M 12G 83.7
ConvNeXt-S [10] C 2242 50M 9G 83.1
SLaK-S [12] C 2242 55M 10G 83.8
HorNet-S [13] C 2242 50M 9G 84.0
InternImage-S (ours) C 2242 50M 8G 84.2
DeiT-B [1] T 2242 87M 18G 83.1
Swin-B [3] T 2242 88M 15G 83.5
CoAtNet-2 [4] T 2242 75M 16G 84.1
PVTv2-B5 [6] T 2242 82M 12G 83.8
DeiT III-B [7] T 2242 87M 18G 83.8
SwinV2-B/8 [8] T 2562 88M 20G 84.2
RepLKNet-31B [14] C 2242 79M 15G 83.5
ConvNeXt-B [10] C 2242 88M 15G 83.8
SLaK-B [12] C 2242 95M 17G 84.0
HorNet-B [13] C 2242 88M 16G 84.3
InternImage-B (ours) C 2242 97M 16G 84.9
Swin-L‡ [3] T 3842 197M 104G 87.3
CoAtNet-4‡ [4] T 3842 275M 190G 87.9
DeiT III-L‡ [7] T 3842 304M 191G 87.7
SwinV2-L/24‡ [8] T 3842 197M 115G 87.6
RepLKNet-31L‡ [14] C 3842 172M 96G 86.6
HorNet-L‡ [13] C 3842 202M 102G 87.7
ConvNeXt-L‡ [10] C 3842 198M 101G 87.5
ConvNeXt-XL‡ [10] C 3842 350M 179G 87.8
InternImage-L‡ (ours) C 3842 223M 108G 87.7
InternImage-XL‡ (ours) C 3842 335M 163G 88.0
ViT-G/14# [15] T 5182 1.84B 5160G 90.5
CoAtNet-6# [4] T 5122 1.47B 1521G 90.5
CoAtNet-7# [4] T 5122 2.44B 2586G 90.9
Florence-CoSwin-H# [16] T − 893M − 90.0
SwinV2-G# [8] T 6402 3.00B − 90.2
RepLKNet-XL# [14] C 3842 335M 129G 87.8
BiT-L-ResNet152x4# [17] C 4802 928M − 87.5
InternImage-H# (ours) C 2242 1.08B 188G 88.9
InternImage-H# (ours) C 6402 1.08B 1478G 89.6

Table A. Image classification performance on the ImageNet
validation set. “type” refers to model type, where “T” and “C” de-
note transformer and CNN, respectively. “scale” is the input scale.
“acc” is the top-1 accuracy. “‡” indicates the model is pre-trained
on ImageNet-22K [18]. “#” indicates pretraining on extra large-
scale private dataset such as JFT-300M [19], FLD-900M [16], or
the joint public dataset in this work.
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Figure A. Comparison of different stacking hyper-parameters.
Each square indicates the accuracy of the model determined by
hyperparameter, with the darker the color, the higher the accuracy.

InternImage-L/XL. All segmentation models are trained us-
ing UperNet [29] with a batch size of 16 for 160k itera-
tions, and compared fairly with previous CNN-based and
transformer-based backbones.

B.2. Settings for System-Level Comparison

COCO object detection. For system-level compari-
son with state-of-the-art large-scale detection models [8,
30–33], we first initialize the InternImage-XL/H backbone
with the weights pre-trained on ImageNet-22K or the 427M
large-scale joint dataset, and double its parameters using the
composite techniques [33]. Then, we pre-train the model
along with the DINO [31] detector on the Objects365 [34]
for 26 epochs, with an initial learning rate of 2× 10−4 and
a batch size of 256. The shorter size of input images is re-
sized to 600−1200 pixels during pre-training, and the learn-
ing rate drops by 10 times at epoch 22. Finally, we fine-tune
these detectors on the COCO dataset for 12 epochs, where
the batch size is 64, and the initial learning rate is 5×10−5,
which drops by 10 times at the final epoch.

ADE20K semantic segmentation. To further reach
leading segmentation performance, we first initialize our
InternImage-H backbone with the pre-trained weights on
the 427M large-scale joint dataset, and arm it with the
state-of-the-art segmentation method Mask2Former [35].
We follow the same training settings in [30, 36], i.e. pre-
training and fine-tuning the model on COCO-Stuff [37] and
ADE20K [28] datasets both for 80k iterations, with a crop
size of 896 and an initial learning rate of 1×10−5.

C. Exploration of Hyper-parameters
C.1. Model Stacking

As discussed in Section 3.2, our model is constructed
in four stacking rules, and we further restrict the model
parameters to 30M for the origin model. We discretize

the stacking hyper-parameters C1 to {16, 32, 64}, L1 to
{1, 2, 3, 4, 5}, and C ′ to {16, 32}. And L2 is determined
by selecting the model size to approximately 30M. In this
way, we obtained 30 models by combining the three hyper-
parameters.

We adopt the training recipe listed in Table B to train
our -T models unless otherwise stated. Fig. A shows the
ImageNet-1K top-1 accuracy of these models under the
same training settings, with darker green indicating higher
accuracy, i.e., models with stronger representational capa-
bility. When C ′ equals 16, models are generally higher than
that with C ′ of 32, and L1 works best at 4, thanks to a rea-
sonable stacking ratio. A large number of channels allows
for more gain. Finally, through the above exploration exper-
iments, we determine our basic stacking hyper-parameter
(C1, C

′, L1, L3) to (64, 16, 4, 18).

C.2. Model Scaling

In Section 3.2, we have shown the constraints on the
depth scaling factor α and the width scaling factor β. Based
on this condition and the -T model (30M), we display rea-
sonable scaling possibilities for extending the -T model to
-B models (100M). As illustrated in Table C, the first two
columns show the formulas for α and β. The penultimate
column indicates model parameters, and the last column in-
dicates the ImageNet-1K top-1 accuracy of these models
after 300 training epochs.

It is worth noting that the model width C1 needs to be
divisible by C ′. Therefore some adjustment is required in
determining the specific scaling parameters. This results in
a small fluctuation in the number of parameters, but this is
acceptable. Our exploratory experiments prove that when
(α, β) is set at (1.09, 1.36) for the best performance. In
addition, the other size models -S/L/XL/H also confirmed
the effectiveness of our scaling rules.

C.3. Kernel Size

As mentioned in Section 3.1, we argue 3×3 dynamic
sparse convolution is enough for the large receptive field.
Here, we explore the role played by the number of convo-
lutional neurons in the DCNv3 operator. Specifically, we
replaced the 3 × 3 kernel in the DCNv3 operator with the
5 × 5 or 7 × 7 kernel. They are all trained by the -T train-
ing recipes (see Table B) and validated on the ImageNet-1K
validation set. The results are shown in Table D.

The results show that when enlarging the convolution
kernel, the parameters and FLOPs are followed by the
surge, while the accuracy is not significantly improved
(83.5 v.s 83.6) or even decreased (83.5 v.s 82.8). These
results show that when the number of convolutional neu-
rons in a single layer increases, the model becomes more
difficult to optimize. This phenomenon is also confirmed
in RepLKNet [14], and it addresses this problem by re-



settings InternImage-T InternImage-S InternImage-B InternImage-L InternImage-XL InternImage-H
IN-1K pt IN-1K pt IN-1K pt IN-22K pt IN-1K ft IN-22K pt IN-1K ft IN-1K ft

input scale 224 224 224 192 384 192 384 224/640
batch size 4096 4096 4096 4096 512 4096 512 512
optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW AdamW
LR 4×10−3 4×10−3 4×10−3 1×10−3 2×10−5 1×10−3 2×10−5 2×10−5

LR schedule cosine cosine cosine cosine cosine cosine cosine cosine
weight decay 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
warmup epochs 5 5 5 5 0 5 0 0
epochs 300 300 300 90 20 90 20 20
horizontal flip ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
random resized crop ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
auto augment ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
layer scale ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
mixup alpha 0.8 0.8 0.8 0.8 ✗ 0.8 ✗ ✗
cutmix alpha 1.0 1.0 1.0 1.0 ✗ 1.0 ✗ ✗
erasing prob. 0.25 0.25 0.25 0.25 ✗ 0.25 ✗ ✗
color jitter 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
label smoothing ε 0.1 0.1 0.1 0.1 0.3 0.1 0.3 0.3
dropout ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
drop path rate 0.1 0.4 0.5 0.1 0.1 0.2 0.2 0.2
repeated aug ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
gradient clip 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
loss CE CE CE CE CE CE CE CE

Table B. Detailed training recipe for InternImage of different parameter scales on ImageNet [18]. “CE” denotes the cross entropy
loss, “LR” denotes the learning rate. The training recipe follows common practices [1, 3, 7, 10] and has some tune-ups. “IN-1K pt”, “IN-
22K pt”, and “IN-1K ft” represent ImageNet-1K pre-training, ImageNet-22K pre-training, and ImageNet-1K fine-tuning, respectively.

scaling factors #parameters top-1 accuracy (%)
α β

1.03 1.40 118M 84.5
1.06 1.38 95M 83.8
1.09 1.36 97M 84.9
1.12 1.34 105M 83.1
1.15 1.32 95M 81.8

Table C. Comparison of different scaling factors. The default
setting is marked with a gray background.

kernel size #parameters FLOPs top-1 accuracy (%)
3× 3 30M 5G 83.5
5× 5 37M 6G 83.6
7× 7 48M 8G 82.8

Table D. Comparison of different kernel sizes in our operator.
The default setting is marked with a gray background.

parameterizing [14] techniques, which might bring extra
time and memory costs in the training phase. In this work,
we avoid this problem by adopting the simple yet effective
3× 3 DCNv3 as InternImage’s core operator.

Fig. B shows the effective receptive fields (ERF) of
ResNet-101 [38] and InternImage-S. A wider distribution of
bright areas indicates a larger ERF. We uniformly activate
the input image at the dog’s eye, count the gradient map
of each block, aggregate by channel, and map back to the
input image. We see that the ERF of ResNet-101 [38] with-
out training is limited to a local area, while the fully trained
ResNet-101 still has an ERF around the eye, and the gradi-

ent amplitude is lower, and the distribution is more sparse.
Therefore, the area that ResNet-101 can effectively perceive
is very limited. For the InternImage-S without training, its
ERF is concentrated around the activation point. Since the
offset is not learned, its ERF is also very small in the last
two blocks. But after sufficient training, InternImage-L can
effectively perceive the information of the entire image in
the 3-rd and 4-th stages.

D. Additional Downstream Tasks
D.1. Classification

iNaturalist 2018 [51] is a read-word long-tailed dataset
containing 8142 fine-graned species. The dataset comprises
437.5K training images and an imbalance factor of 500.
For this experiment, we initialize our InternImage-H model
with the pre-trained weights on the 427M large-scale joint
dataset, and fine-tune it on the training set of iNaturalist
2018 for 100 epochs. We follow MetaFormer [39] to adopt
a resolution of 384×384 for fine-tuning, with the utilization
of meta information. Other training settings are the same as
the recipe for fine-tuning InternImage-H on ImageNet-1K,
as reported in Table B. As a result, our method achieves
the state-of-the-art accuracy of 92.6 (see Table E) on the
validation set of iNaturalist 2018, 3.9 points better than the
previous best model MetaFormer [39].

Places205 [52] is a dataset containing 2.5 million im-
ages of 205 scene categories, which are dedicated to the
scene recognition task. The images in this dataset cover a



method classification semantic segmentation
iNaturalist2018 Places205 Places365 COCO-Stuff-10K Pascal Context Cityscapes (val) Cityscapes (test) NYU Depth V2

previous best 88.7a 69.3b 60.7c 54.2d 68.2d 86.9e 85.2d 56.9f

InternImage-H 92.6 (+3.9) 71.7 (+2.4) 61.2 (+0.5) 59.6 (+5.4) 70.3 (+2.1) 87.0 (+0.1) 86.1 (+0.9) 68.1 (+11.2)

method object detection
LVIS (minival) LVIS (val) VOC2007 VOC2012 OpenImages CrowdHuman BDD100K

previous best 59.8g 62.2h 89.3i 92.9j 72.2k 94.1l 35.6m

InternImage-H 65.8 (+6.0) 63.2 (+1.0) 94.0 (+4.7) 97.2 (+4.3) 74.1 (+1.9) 97.2 (+3.1) 38.8 (+3.2)

Table E. Summary of InternImage-H performance on various mainstream vision benchmarks. a: MetaFormer [39]. b: MixMIM-
L [40]. c: SWAG [41]. d: ViT-Adapter [36]. e: PSA [42]. f: CMX-B5 [43]. g: GLIPv2 [44]. h: EVA [45]. i: Cascade Eff-B7
NAS-FPN [46]. j: ATLDETv2 [47]. k: OpenImages 2019 competition 1st [48]. l: Iter-Deformable-DETR [49]. m: PP-YOLOE [50].

(a) ResNet101 w/o training

(b) ResNet101 w/ trained model

(c) InternImage-S w/o training

(d) InternImage-S w/ trained model

stage 1 stage 2 stage 3 stage 4

Figure B. Visualization of the effective receptive field (ERF)
of different backbones. The activated pixel is at dog’s eye. (a)
and (b) shows the ERF of ResNet-101 [38] with (w/) and without
(w/o) training on ImageNet-1K [18], respectively. (c) and (d) are
the ERF of InternImage-B with (w/) and without (w/o) training on
ImageNet-1K.

wide range of indoor and outdoor scenes, such as offices,
kitchens, forests, and beaches. We initialize our model
with pre-trained weights on a large-scale joint dataset,
consisting of 427 million images, and fine-tune it on the
Places205 training set. Other training settings are the same
as the recipe for fine-tuning InternImage-H on ImageNet-
1K, as reported in Table B. Our method achieves state-of-
the-art accuracy of 71.7 (see Table E) on the validation
set of Places205, outperforming the previous best model
MixMIM-L [40] by 2.4 points.

Places365 [53] is a dataset containing 1.8 million images

of 365 scene categories, which are dedicated to the scene
recognition task. The images in this dataset cover a wide
range of indoor and outdoor scenes, such as airports, bed-
rooms, deserts, and waterfalls. The specific pre-training and
fine-tuning strategies are the same as for Places205. Our
method achieves state-of-the-art accuracy of 61.2 (see Ta-
ble E) on the validation set of Places365, outperforming
the previous best model SWAG [41] by 0.5 points. The
Places365 dataset provides a more fine-grained classifica-
tion task compared to Places205, allowing our model to
learn more subtle differences between similar scenes.

D.2. Object Detection

LVIS v1.0 [54] is a large-scale vocabulary dataset for ob-
ject detection and instance segmentation tasks, which con-
tains 1203 categories in 164k images. For this dataset, we
initialize our InternImage-H with the Objects365 [34] pre-
trained weights, then fine-tune it on the training set of LVIS
v1.0. Here, we report the box AP (i.e., APb) with multi-
scale testing on the minival set and the val set, respectively.
As shown in Table E, our InternImage-H creates a new
record of 65.8 APb on the LVIS minival, and 63.2 APb on
the LVIS val, outperforming previous state-of-the-art meth-
ods by clear margins.

Pascal VOC [55] contains 20 object classes, which
has been widely used as a benchmark for object detection
tasks. We adopt this dataset to further evaluate the detec-
tion performance of our model. Specifically, we employ
the Objects365 [34] pre-trained weights to initialize our
InternImage-H, and fine-tune it on the trainval set of Pas-
cal VOC 2007 and Pascal VOC 2012 following previous
method [46]. As shown in Table E, on the Pascal VOC 2007
test set, our InternImage-H yields 94.0 AP50 with single-
scale testing, which is 4.7 points better than previous best
Cascade Eff-B7 NAS-FPN [46]. On the Pascal VOC 2012
test set, our method achieves 97.2 mAP, 4.3 points higher
than the best record on the official leaderboard [47].

OpenImages v6 [56] is a dataset of about 9 million im-
ages with 16M bounding boxes for 600 object classes on
1.9 million images dedicated to the object detection task,
which are very diverse and often embrace complex scenes



with multiple objects (8.3 per image on average). For
this dataset, we use the same settings as the previous two
datasets. In addition, we follow [48] to use the class-aware
sampling during fine-tuning. As reported in Table E, our
InternImage-H yields 74.1 mAP, achieving 1.9 mAP im-
provement compared to the previous best results [48].

CrownHuman [57] is a benchmark dataset to better
evaluate detectors in crowd scenarios. The CrowdHuman
dataset is large, rich-annotated and contains high diversity.
CrowdHuman contains 15000, 4370 and 5000 images for
training, validation, and testing, respectively. There are a
total of 470K human instances from train and validation
subsets and 23 persons per image, with various kinds of oc-
clusions in the dataset. We used the same training setup
as for the previous dataset. Our pre-trained model reached
optimal performance in 3750 iterations, exceeding the pre-
vious best model Iter-Deformable-DETR [49] by 3.1 AP.

BDD100K [58] is a dataset of around 100K high-
resolution images with diverse weather and lighting con-
ditions, containing 10 object categories, including pedestri-
ans, cars, buses, and bicycles, dedicated to the object de-
tection task. The images in this dataset are captured from
a moving vehicle, simulating real-world scenarios. For this
experiment, we initialize our InternImage-H model with the
pre-trained weights on the 427M joint dataset and fine-tune
it on the BDD100K training set for 12 epochs. As re-
ported in Table E, our InternImage-H achieves 38.8 mAP
on the validation set, which is the state-of-the-art perfor-
mance, surpassing the previous best model by 3.2 mAP. Our
method demonstrates superior performance in detecting ob-
jects in real-world driving scenarios, which can benefit au-
tonomous driving and intelligent transportation systems.

D.3. Semantic Segmentation

COCO-Stuff [37] includes the images from the COCO
[24] dataset for semantic segmentation, spanning over 171
categories. Specifically, COCO-Stuff-164K is the full set
that contains all 164k images, while COCO-Stuff-10K is a
subset of the -164K that splits into 9,000 and 1,000 images
for training and testing. Here, we equip our InternImage-
H with the advanced Mask2Former [35], and pre-train the
model on the COCO-Stuff-164K for 80k iterations. Then
we fine-tune it on the COCO-Stuff-10K for 40k iterations
and report the multi-scale mIoU. The crop size is set to
512×512 in this experiment. As shown in Table E, our
model achieves 59.6 MS mIoU on the test set, outperform-
ing the previous best ViT-Adapter [36] by 5.4 mIoU.

Pascal Context [59] contains 59 semantic classes. It
is divided into 4,996 images for training and 5,104 images
for testing. For this dataset, we also employ Mask2Former
with our InternImage-H, and follow the training settings
in [36]. Specifically, we first load the classification pre-
trained weights to initialize the model, then fine-tune it on

method #params scale FLOPs acc (%) throughput (img/s)
InternImage-B 2242 16G 84.9 775
(ours) 97M 8002 206G − 54
InternImage-B- 2242 24G − 311
DCNv2 [65] 146M 8002 313G − 16

ConvNeXt-B [10] 88M 2242 15G 83.8 881
8002 196G − 58

RepLKNet-B [14] 79M 2242 15G 83.5 884
8002 198G − 21

DAT-B [10] 88M 2242 16G 84.0 661
8002 194G − 24

Table F. Throughput comparison of different models under dif-
ferent input resolutions. “#params” denotes the number of pa-
rameters. “acc” represents the top-1 accuracy on the ImageNet-1K
validation set. The throughputs of 224×224 and 800×800 input
resolutions are tested with the batch size of 256 and 2 respectively,
using a single A100 GPU.

method #params scale GFLOPs throughput memory acc (%) mAP
InternImage-L 223M 3842/8002 108/469 148/33 39G/43G 87.7/- -/56.0
Swin-L [3] 197M 3842/8002 104/451 183/39 35G/38G 87.3/- -/53.9

Table G. Efficiency comparison with Swin-Transformer.
Throughput (img/s) is measured on an A100 GPU. Throughtput
and memory are measured with a batch size of 16 for 3842 and 4
for 8002. The mAP refers to the bounding box mAP with Cascade
R-CNN (3× + MS) on COCO.

the training set of Pascal Context for 40k iterations. The
crop size is set to 480×480 in this experiment. As shown in
Table E, our method reports 70.3 MS mIoU on the test set,
which is 2.1 points better than ViT-Adapter [36].

Cityscapes [60] is a high-resolution dataset recorded in
street scenes including 19 classes. In this experiment, we
use Mask2Former [35] as the segmentation framework. Fol-
lowing common practices [36, 61, 62], we first pre-train
on Mapillary Vistas [63] and then fine-tune on Cityscapes
for 80k iterations, respectively. The crop size is set to
1024×1024 in this experiment. As shown in Table E, our
InternImage-H achieves 87.0 MS mIoU on the validation
set, and 86.1 MS mIoU on the test set.

NYU Depth V2 [64] comprises of 1449 RGB-D images,
each with a size of 640×480. These images are divided into
795 training and 654 testing images, each with annotations
on 40 semantic categories. We adopt the same training set-
tings as we used when fine-tuning on Pascal Context. As
shown in Table E, our method achieves a big jump to 68.1
MS mIoU on the validation set, which is 11.2 points better
than CMX-B5 [43].

E. Throughput Analysis

In this section, we benchmark the throughput of our In-
ternImage with counterparts, including a variant equipped
with DCNv2 [65], ConvNext [10], RepLKNet [14], and a
vision transformer with deformable attention (DAT) [66].
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Figure C. Comparison of robust evaluation of different meth-
ods. These results show that our model has better robustness in
terms of translation, rotation, and input resolution.

As shown in Table F, compared to the variant with DCNv2
[65], our model enjoys better parameter-efficient and sig-
nificantly faster inference speed under both 224×224 and
800×800 input resolutions. Compared to RepLKNet-B [14]
and DAT-B [66], our model has a throughput advantage at
a high input resolution (i.e., 800×800). This resolution is
widely used in dense prediction tasks such as object detec-
tion. Compared with ConvNeXt [10], despite the through-
put gap due to DCN-based operators, our model still has an
accuracy advantage (84.9 vs. 83.8), and we are also looking
for an efficient DCN to make our model more suitable for
downstream tasks that require high efficiency. In Table G,
we provide a full comparison of InternImage with Swin
Transformer [3] in terms of throughput and memory, which
shows that InternImage obtains better accuracy than Swin-L
on various tasks with comparable inference efficiency.

F. Robustness Evaluation on ImageNet
In this section, we evaluate the robustness of differ-

ent models under different transformations (see Fig. C).
We consider translation, rotation, and scaling to evalu-
ate. The models we choose for comparison include a
convolutional model (ConvNeXt-T [10]), a local attention-
based model (Swin-T [3]), a global attention-based model

(PVTv2-B2 [6]), and our InternImage-T.

F.1. Translation Invariance

Translation invariance describes the capability of the
model to retain the original output when the input image
is translated. We evaluate the translation invariance in the
classification task by dithering the image from 0 to 64 pix-
els. The invariance is measured by the probability that the
model predicts the same label when the same input image
is translated. The first row of Fig. C indicates our Intern-
Imagehas the translation invariance of the different meth-
ods. It is evident that the robustness of the four mod-
els to translation is shown as our method is the best, fol-
lowed by convolution-based ConvNeXt, followed by global
attention-based PVTv2, and the worst local attention-based
Swin Transformer [3].

F.2. Rotation Invariance

To evaluate the rotation invariance of the classification
task, we rotate the image from 0◦ to 45◦ in steps of 5◦. In
a similar way to translation invariance, the predicted con-
sistency under different rotation angles is used to evaluate
the rotational invariance. From the second row of Fig. C,
we found that the consistency performance of all models is
comparable in the small angle phase. However, at large-
angle rotation (i.e., > 10◦), our model is clearly superior to
the other models.

F.3. Scaling Invariance

We evaluate the scaling invariance on object detection.
The scaling factor of the input image varies from 0.25 to 3.0
in steps of 0.25. Detection consistency is defined as the in-
variance metric for the detection task. The predicted boxes
on the scaled images are first converted back to the original
resolution, and then the predicted boxes at the original res-
olution are used as the ground truth boxes to calculate the
box mAP. As seen in the last row of Fig. C, we can observe
that all methods of our experiments are sensitive to down-
scaling. And they show invariance comparable to the input
at small resolutions. Our method performs better when scal-
ing up the images. Both box consistency and bounding box
mAP are better than the others.

F.4. How Hungry the Model is for Data Scale?

In order to verify the robustness of the model to the
data scale. We uniformly sampled the ImageNet-1K data
to obtain 1%, 10%, and 100% data, respectively. And
we chose ResNet-50 [38], ConvNeXt-T [10], Swin-T [3],
InternImage-T-dattn and our InternImage-T to conduct 300
rounds of training experiments on these data. The ex-
perimental settings are consistent with Table B. The ex-
perimental results can be viewed in Table H. We see that
ResNet [38] performs best on the 1% and 10% data (12.2%



method 1% 10% 100%
ResNet-50 [38] 12.2 57.5 80.4
ConvNeXt-T [10] 8.4 52.6 82.1
Swin-T [3] failed 12.1 81.3
InternImage-T-dattn [67] 4.1 49.9 81.9
InternImage-T (ours) 5.9 56.0 83.5

Table H. Accuracy of different models at different data scales.
“InternImage-dattn” refers to the model variant equipped with de-
formable attention [67].

& 57.5%), benefiting from its inductive biases. But its
upper limitation is low (80.4%) when the data is suffi-
cient. Swin-T fails completely in 1% datasets and shows
good performance only on the 100% dataset. The proposed
InternImage-T has strong robustness not only on 1% and
10% data (5.9% and 56.0%) but also on full data (83.5%),
which is consistently better than the InternImage-T vari-
ant with deformable attention (dattn) and ConvNeXt [10].
These results indicate the robustness of our model with re-
spect to the data scale.
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