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This document provides more details of our approach
and additional experimental results, organized as follows:

• §1 Implementation Details of LANA.
• §2 Additional Quantitative Results on REVERIE [7].
• §3 More Ablative Study on Route Encoder.
• §4 Additional Qualitative Results.
• §5 Discussion about Social Impact and Limitations.

1. Implementation Details of LANA

We employ an additional Instruction Trajectory Match-
ing (ITM) task following previous efforts [2] during pre-
training, which predicts whether a pair of instruction
and trajectory is aligned. The three tasks IF (Instruc-
tion Following), IG (Instruction Generation) and ITM (In-
struction Trajectory Matching) are sampled with a ratio
IG:IF:ITM=4:1:2. We present the pseudo-code of the pre-
training procedure in Algorithm 1 (ITM is omitted for sim-
plicity). For finetuning, the instruction following task is op-
timized with Reinforcement Learning (RL) and Imitation
Learning (IL). IL utilizes the same loss in Eq.13 while RL is
implemented based on the Asynchronous Advantage Actor-
Critic (A3C) algorithm [6]. During finetuning, the sampling
ratio for IG and IF is set to IG:IF=2:5; the ITM task is aban-
doned. Following the common practice [2, 5, 8], we con-
catenate the object features with the panoramic features and
add an object grounding loss for the instruction following
task on REVERIE [7]. The detailed architecture of LANA
is shown in Table A.
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Table A: Detailed model architecture of LANA (§1).

2. Additional Quantitative Results on REVERIE
The synthetic samples in the PREVALENT dataset are

created with a speaker trained on R2R [1]. A recent work
DUET [3] collected a new augmented dataset by synthe-
sizing instructions with a speaker model trained on the

Algorithm 1 The pseudo-code of pre-training for LANA.
Arguments: The labeled dataset H= {(R,X)}, the maxi-
mum iteration N , Route Encoder Er, Language Encoder E l,
Language Decoder, Dl, and Route DecoderDr.

1: Initialize Er, E l, Dr, Dl

2: for iteration i ∈ [1, . . . , N ] do
3: Sample batch B ⊂ H
4: Sample a pretraining task T from {IG, IF}
5: L ← 0
6: if T is IG then
7: for (R,X) ∈ B do
8: [r̄1:T ] = Er(R)
9: [x̄1:l−1] =E l([x1:l−1])

10: ql = Dl([x̄1:l−1], [r̄1:T ])
11: Estimate Lg ▷ Defined in Eq.12.
12: L ← L+ Lg

13: Calculate ∂L
14: Update Er, E l, Dl

15: else if T is IF then
16: for (R,X) ∈ B do
17: [r̄1:t−1, Ōt] =Er([r1:t−1,Ot])
18: [x̄1:L] =E l(X)
19: pt = Dr([r̄1:t−1, Ōt], [x̄1:L])
20: Estimate Lf ▷ Defined in Eq.13.
21: L ← L+ Lf

22: Calculate ∂L
23: Update Er, E l, Dr

return Er, E l, Dr, Dl

REVERIE dataset [7]. We report additional quantitative re-
sults of LANA trained with this dataset in Table B. Remark-
ably, this training strategy boosts the performance by a large
margin on REVERIE [7]. LANA achieves better naviga-
tion performance than DUET [3] with the same training set,
demonstrating the algorithmic advantages of our approach.

1



REVERIE val unseen REVERIE test unseen
Methods

SR ↑ SPL ↑ OR ↑ TL ↓ RGS ↑ RGSPL ↑ SR ↑ SPL ↑ OR ↑ TL ↓ RGS ↑ RGSPL ↑
RCM [9] [CVPR2019] 9.29 6.97 14.23 11.98 4.89 3.89 7.84 6.67 11.68 10.60 3.67 3.14

VLN⟳BERT [5] [CVPR2021] 30.67 24.90 35.02 16.78 18.77 15.27 29.61 23.99 32.91 15.86 16.50 13.51
AirBERT [4] [ICCV2021] 27.89 21.88 34.51 18.71 18.23 14.18 30.28 23.61 34.20 17.91 16.83 13.28

HAMT [2] [NeurIPS2021] 32.95 30.20 36.84 14.08 18.92 17.28 30.40 26.67 33.41 13.62 14.88 13.08
HOP [8] [CVPR2022] 30.39 25.10 35.30 17.16 18.23 15.31 29.12 23.37 32.26 17.05 17.13 13.90

DUET† [3] [CVPR2022] 46.98 33.73 51.07 22.11 32.15 23.03 52.51 36.06 56.91 21.30 31.88 22.06
LANA (ours) 34.00 29.26 38.54 16.28 19.03 16.18 33.50 26.89 36.41 16.75 17.53 14.25

LANA† (ours) 48.31 33.86 52.97 23.18 32.86 22.77 51.72 36.45 57.20 18.83 32.95 22.85

Table B: Additional quantitative results for instruction following on REVERIE[7]. † indicate the model is trained on the DUET dataset [3].
See §2 for details.

#
Route Encoder Instruction Following Instruction Generation

self att cross att SR ↑ SPL ↑ OR ↑ TL ↓ SPICE ↑ Bleu-1 ↑ Bleu-4 ↑ CIDEr ↑ Meteor ↑ Rouge ↑
1 ✔ 65.6 60.1 72.7 11.7 0.202 0.703 0.262 0.375 0.224 0.476
2 ✔ 64.8 59.8 72.8 11.9 0.222 0.715 0.281 0.430 0.233 0.486
3 ✔ ✔ 67.9 61.6 75.7 12.0 0.226 0.736 0.298 0.457 0.238 0.498

Table C: Ablation study on R2R val unseen [1]. See §3 for details.

3. More Ablative Study on Route Encoder
In this section, we further study the efficacy of our route

encoder design. Our route encoder Er considers both previ-
ous action tokens {at}t as well as past panoramic observa-
tions {Ot}t (see Eq. 3). We therefore report two variants,
whose route encoder 1) only performs the temporal self-
attention over the previous action tokens {at}t, and 2) only
adopts the cross-attention operation to perceive the histori-
cal panoramic observation {Ot}t.

The results on R2R val unseen [1] are summarized in
Table C. As seen, integrating both the historical panoramic
observation and previous action information yields the best
performance.

4. Additional Qualitative Results
In this section, we provide more qualitative results for

instruction following and generation. Fig. 1 visualizes the
comparison between LANAmt and LANAst on instruction
generation. We can observe that LANAmt generates more
accurate and vivid instructions. Concretely, LANAmt is able
to not only describe precise actions (e.g., turn left, walk
through), but also highlight crucial landmark (e.g., office,
bathroom, toilet).

Fig. 2 compares LANAmt with LANAst on instruction
following. Given the challenging instruction “Leave the
closet · · · on your left”, LANAmt successfully take actions
to reach the target location, while LANAst terminates the
navigation at a wrong position. This intuitively demon-
strates the effectiveness of the joint-training strategy.

Fig. 3 shows the real-time behavioral description pro-
vided by LANAmt. The generated report keeps the moni-
tor updated on the navigation process, and reveals its inner
decision mode. For examples, the route descriptions gen-
erated for Step 1-3 and Step 3-8 can vividly explain to hu-

man how LANAmt executes the complex command “Walk
to the left of the table and chairs down the hallway” – first
“Walk into the room. Stop in front of the table,” then “exit
the room and walk through the hallway”. This case reveals
the advantages of LANA in interpretability and human-robot
communication.
GT Instruction: Go through the door, turn left and go through the other door.
Then turn left again, follow the hallway and continue down. Turn left one more
time for the bathroom and stop.

𝐋𝐀𝐍𝐀𝐦𝐭: Exit the room
and turn left. Walk
through the office and
turn left. Walk into the
bathroom and stop in
front of the toilet.

𝐋𝐀𝐍𝐀#$: Exit the room
and turn left. Go through
the doorway. Go into the
bathroom and stop in the
doorway.

GT Navigation Route

Figure 1: Visual comparison results between LANAmt and LANAst

for the instruction generation task (§4). The start and end points
of a navigation route are respectively denoted by and .

5. Discussion
Social Impact. A language-capable navigator can find
much broader application scenarios compared with previ-
ous “dumb” ones and can be more deeply involved into hu-
man daily life. It can also serve as a guide robot to assist
people who are low-vision or blind.
Limitations. The agent is developed in virtual simulated
environments. If the algorithm is deployed on a real robot
in a real dynamic environment, the collisions during navi-
gation can potentially cause damage to persons and assets.
More work should be done to practice real-world deploy-
ment, e.g., introducing hard constraints to the action space



GT Instruction: Leave the closet and take a right into the hallway. In the hall walk straight and stick
left passing a cabinet on your left. Once past the cabinet go into the first room on your left.

LANA!": SUCCESS

LANA#$: FAILURE

Figure 2: Visual comparison results between LANAmt and LANAst for the instruction following task (§4). The start and end points of a
navigation route are respectively denoted by and .

gt:"Walk to the left of the table and chairs down the hallway. Turn left and walk into the bedroom on the left. walk around the bed and into the 
bathroom and stop.",
"Go into the bedroom with an 'E' above the head of the bed. Go into the bathroom. Stop next to the sink.",
"Walk past large doorway and turn left. Walk toward doorway near photos on the wall. Enter the doorway and walk past the bed. Enter the bathroom 
and wait."

GT Instruction: Walk to the left of the table and chairs down
the hallway. Turn left and walk into the bedroom on the left.
Walk around the bed and into the bathroom and stop.

Step 1-3: Turn around and walk into the room. stop
in front of the table.

Step 3-8: Exit the room and walk through the
hallway. Turn left and walk into the bedroom. Stop
in the doorway.

Step 8-10: Walk past the bed and exit the bedroom.
Walk into the bathroom and wait near the sink.

Navigation Report generated by 𝐋𝐀𝐍𝐀𝐦𝐭
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LANA!": SUCCESS

Figure 3: Step-by-step navigation behavioral explanation (§4). The start and end points of a navigation route are respectively denoted by
and . LANA is able to interpret its navigation behavior using natural language. For example, at step 2-4, LANAmt enters the room

and then exits the room because LANAmt intends to find the table mentioned in the instruction.

to avoid collisions, and including additional experiments to
study the risk of potential damage. In addition, the gener-
ated route description, though informative and readable for
human, is a kind of post-hoc interpretation. It cannot per-
fectly and exactly explain the inner decision mode of the

agent.

Future work. In the future, in addition to investigating
the efficacy of our approach in other navigation tasks (e.g.,
object-goal navigation, audio-goal navigation), we will de-
sign more compact architecture to jointly learn the two



tasks.
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