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1. Unveiling Learned Concepts
Figure 1a shows the activations of all 20 concepts for

digit 0 to 9, learned from MNIST [4]. We can see that each

digit only has a few concepts activated, e.g., digit 7 has

Cpt.3, Cpt.8, Cpt.11, Cpt.12, and Cpt.15. We also

show the top-10 activated samples for each concept (i.e., for

concept κ, the samples with the highest ten tκ’s in the train-

ing set) in Figure 1b. It can be observed that some concepts

are hardly activated. For instance, Cpt.1 has no significant

highlights, suggesting smaller tκ.

Figure 1c provides the reconstruction results by our con-

cept decoder when a certain concept is deactivated by set-

ting corresponding tκ being zero (reconstructed images

with significant visual changes are marked in red). We can

see that digit 7 turns into digit 9 when Cpt.3 is deactivated.

Figure 1d shows that this change happens consistently for

all samples of digit 7.

In addition, as our classifier is a single fully-connected

(FC) layer, we can easily obtain the contribution of concept

κ to class ω as Iωκ = tκzωκ, where zωκ is the (ω, κ)-th

element of the learnable matrix Z of the FC layer in Eq. (13)

in the main paper. Figure 1e gives the importance of each

concept for the digit 7 shown in Figure 1a. We can see that

Cpt.3 and Cpt.8 are among the most decisive concepts.

Figure 2 shows the attention map for each concept for

the input image (the left-most image) and zωκ’s for ω =
yellow headed black bird. We see that the classifi-

cation of yellow headed black bird is mainly based

on Cpt.2 and Cpt.16, which look to represent the breast

and head, respectively. Figure 3 show 10 example images

with the attention map for each concept learned from a 50-

class subset of CUB200 [12], where the 10 images are of

the highest tκ. We can see that the attended regions of most

concepts are consistent among its top-10 activated samples,

and most concepts look to represent meaningful patterns.

For example, Cpt.7 focuses on the leg, and Cpt.8 focuses

on wings.

The concepts learned on the ImageNet dataset [3] are

shown in Figure 6. We can see that, for the given sample

of Goldfish (Figure 4a), the two most important concepts

are Cpt.2 and Cpt.9. These two concepts cover semanti-

cally consistent regions in the training samples (according

to Figure 4b) and look to represent dorsal fins and a near-gill

region, respectively.
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Figure 1. (a) Attention map for each of 20 concepts extracted for the input (left-most) image of each digit. (b) Top-10 activated samples

for each concept. (c) Image reconstruction with one concept deactivated. (d) Image reconstruction for different samples of digit 7 with

deactivating Cpt.3. (e) Concept importance for digit 7.
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Figure 2. Concept activations for a sample of yellow headed black bird.
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Figure 3. Concepts learned from CUB200, represented by top-10 activated samples.
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Figure 4. (a) Concept activations for a sample of Goldfish and the importance of each concept. (b) Concepts learned from ImageNet

(n = 20 and k = 10).

2. Details of Experiments Settings
2.1. Normalization Function φ

The normalization φ determines the spatial distribution

of each concept, which may depend on the target domain.

For example, images for the handwritten digit recognition

dataset are typically in black and white, and only the shape

formed by strokes matters. In this case, concepts are less

likely to overlap with each other spatially. Meanwhile, nat-

ural images have colors, textures, and shapes; any (combi-

nation) of them can be a concept. Thus, concepts possibly

coincide at the same spatial position.

Let a′k = Q(cκ)
�K(F ′) (appears in Eq. (1)). For

domain with supposedly non-overlapping concepts (e.g.,

MNIST), we use φ given by

φκ({a′κ}) = σ(a′κ)� softmaxS({a′κ}). (1)

This normalization takes {a′κ} for all concepts as input,

which slightly abuses Eq. (1) of the main paper. σ is the

(element-wise) sigmoid function, and � is the Hadamard

product. softmaxS(·) is taken over all concepts at each spa-

tial position, so different concepts are less likely to be de-

tected at the same spatial position.

For domains with overlapping concepts (e.g., CUB200

and ImageNet), we only use the sigmoid function for nor-

malization as

φ(a′κ) = σ(a′κ). (2)

2.2. Weight α(y, y′)

Equation (5) in the main paper uses weight α(y, y′) to

mitigate the imbalance of class distribution. Among a mini-

batch B, the number CS of pairs with the same label is far

less than the number CD of different labels. We therefore

introduce a weight α(y, y′) given by

α(y, y′) =

{
CD/(CS + CD), for y = y′

CS/(CS + CD), otherwise
. (3)

2.3. Implementation of k-means and PCA

We use the ResNet-18 backbone to compute feature map

F ∈ R
d×h×w from all images in the training set. Let F

denote the set of all features fpq ∈ R
d in F (p = 1, . . . , h

and q = 1, . . . , w) from all images (thus, |F| = N×h×w).

We apply k-means or PCA to F . The cluster centers or the

principal components are deemed as concepts.

Let fpq ∈ R
d be features at the spatial position (p, q)

in a new image, after necessary preprocessing1. We can

1PCA’s features should be centered by subtracting the mean of F .
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Figure 5. The relationships between the accuracy and the hyperparameter settings. (a) Number n of classes vs. accuracy. (b) Number k of

concepts vs. accuracy.

calculate the soft-assignment aκpq of fpq to each concept

cκ. For k-means, we used

aκpq = e−‖fpq−cκ‖. (4)

For PCA, we adopt the absolute value of the cosine sim-

ilarity, given by

aκpq = abs(sim(fpq, cκ)), (5)

where sim(·, ·) is the cosine similarity and abs(·) give the

absolute value.

We aggregate aκpq for all spatial positions to form at-

tention map aκ ∈ R
l. Similarly to BotCL, we summarize

the presence of each concept into concept activation tκ by

reducing the spatial dimension of aκ as

tκ = tanh

(∑
pq

aκpq

)
. (6)

Also, the classifier is learned from the concept activations

computed for all images in the training set.

2.4. Numbers of Classes and Concepts

In Figure 5a, we evaluate the classification performance

of BotCL on subsets of ImageNet with a different number

n of classes while the number k of concepts is fixed at 50).

BotCL has a competitive performance when n is less than

200, compared to the ResNet baseline. However, BotCL

suffers from a performance drop when n is larger than 200,

which means BotCL is more suitable for small- and middle-

sized tasks.

This performance drop may be relieved by increasing k,

as indicated in Figure 5b, where we give the relationship

between the number k of concepts and the classification ac-

curacy (with n fixed at 10 for MNIST; 50 for CUB200 and

ImageNet).

On the one hand, a large k (when k ≤ 200) can help im-

prove the performance. The best performance for MNIST,

CUB200, and ImageNet is achieved when k = 100, k =
150, and k = 100, respectively. This implies that k should

be tuned for each dataset to achieve the best classification

accuracy. However, training fails when k ≥ 300. This is a

drawback of BotCL.

On the other hand, k is directly related to the granularity

of the learned concepts. That is, a larger k tends to learn

finer-grained concepts, while a smaller k leads to coarse-

grained ones. Therefore, the choice of k should be decided

by jointly considering the actual needs of accuracy as well

as the concept granularity.
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Figure 6. Generation of the Synthetic dataset. (a) Defined shapes from S.1 to S.15, where (S.1 to S.5) are the shapes-of-interest, while

(S.6 to S.15) are noises. (b) Data samples.

Table 1. Selected combinations of shapes-of-interest for the Syn-

thetic dataset. “∼” denotes NOT, “xor” denotes exclusive OR,

“+” denotes OR, and “·” denotes AND. For example, ω1 presents

in an image when the image does not contain both S.1 and S.3
or contains S.4.

Label Definition

ω1 ∼ (S.1 · S.3) + S.4

ω2 S.2+ S.3+ S.5

ω3 S.2 · S.3+ S.4 · S.5
ω4 S.2 xor S.3

ω5 S.2+ S.5

ω6 ∼ (S.1+ S.4) + S.5

ω7 (S.2 · S.3) xor S.5

ω8 S.1 · S.5+ S.2

ω9 S.3

ω10 (S.1 · S.2) xor S.4

ω11 ∼ (S.3+ S.5)
ω12 S.1+ S.4+ S.5

ω13 S.2 xor S.3

ω14 ∼ (S.1 · S.5+ S.4)
ω15 S.4 xor S.5

3. Details of the Synthetic Dataset

3.1. Generation

For evaluating the performance of concept discovery, we

regenerate the Synthetic dataset using the official code from

ConceptSHAP [13] (as the Synthetic dataset is not directly

provided). As shown in Figure 6a, there are 15 different

shapes (from S.1 to S.15) in this dataset. The first 5 shapes

(S.1 to S.5) are selected as the shapes-of-interest, and the

other 10 shapes are noises. As shown Table 1, 15 different

combinations of the shapes-of-interest form 15 classes. The

color of the shapes is randomly picked from ‘green’, ‘red’,

‘blue’, ‘black’, ‘orange’, ‘purple’, and ‘yellow’. The posi-

tions of the shapes are constrained not to overlap each other.

For this, we divide an image into a 7 × 7 grid (which coin-

cides ResNet’s grid corresponding to F ) and place a single

shape in a block. We show some samples in Figure 6b.

3.2. Quantitative Metrics

We denote a set of NE test images as X = {xi|i =
1, . . . , NE} and a set of k learned concepts as C = {κ|κ =
1, . . . , k}. For each test sample x ∈ X , we denote the

ground-truth position of each shapes-of-interest S.j as sj ,

which is a set of pixels inside the block (in the original im-

age size). Meanwhile, we also define the area of each con-

cept. For BotCL, k-means, and PCA, the spatial position

of each concept is given by aκ. We apply thresholding to

aκ to spot the concept. We denote the set of pixels whose

attention value is larger than the threshold β = 0.2 by āκ.

For ACE [5], āκ includes all pixels in the super-pixels cor-

responding to the concept.

We first define hjκ for shape S.j and concept κ, which

represents if κ overlaps S.j, as

hjκ =

{
1, |sj ∩ aκ|/|sj | > γ

0, otherwise
. (7)

where ∩ is the intersection, and γ is a predefined threshold

(γ = 0.9 in our setting). Note that we do not use IoU, as a

single concept can cover multiple shapes. For example, one

of the noise shapes (S.6–S.15) can be covered by a concept

that also covers one of shapes-of-interest when the noise

shape co-occurs with the shape-of-interest. In this case, the

area of the concept is large, but this does not necessarily

mean the discovered concept is inferior as the noise shapes

are irrelevant to the target classification task. We thus de-

sign another metric named Purity to evaluate the practical

purity of the concept, which is detailed later in this section.

The coverage of s by concept κ is then given by

Coveragesκ = E[hsκ], (8)

which is computed over all images in S who contain s.

Similarly to [13], we associate each of the shapes-of-

interest to one of the concepts for evaluation. Let A de-

note a set of pairs of a shape-of-interest and a concept, i.e.,



(a) ACE

(b) k-means

(c) PCA

Figure 7. Coveragesκ (the concept associated with each of the five shapes is marked).



Figure 8. The impact of concept number k on BotCL, ACE, k-means, and PCA to classification accuracy, Completeness, Purity, ad

Distinctiveness. Note that the classification accuracy of ACE is not shown because ACE is a post-hoc method and does not do classification

by itself.

A = {(S.j, κj)|j = 1, . . . , 5}, where κj ∈ C. We can find

optimal A by

A∗ = argmaxA
∑

(s,κ)∈A
Coveragesκ. (9)

Note that in this maximization, only concepts in A are the

variables and the shapes are fixed.

Based on this association, three metrics are defined to

evaluate the concept discovery performance.

• Completeness: The most important quality of a con-

cept is whether it has the ability to capture the associ-

ated shape completely. This can be given by

Completeness =
1

|A∗|
∑

(s,κ)∈A∗
Coveragesκ (10)

• Purity: We also expect one learned concept to be

pure; that is, a concept should only cover the associ-

ated shape but not the other shapes-of-interest. Thus,

we define Purity as

Purity =
1

|A∗|
∑

(s,κ)∈A∗

Coveragesκ∑
s′ Coverages′κ

, (11)

where the summation in the denominator is computed

over all shapes-in-interest.

• Distinctiveness: We designed BotCL so that the dis-

covered concepts are distinctive. That is, any pair of

concepts should cover different sets of shapes. We thus

define distinctiveness as

Distinctiveness =

1

5|O|
∑

(κ,κ′)∈O

∑
s

|Coveragesκ − Coverages′κ′ |,

(12)

where O is the set of all possible pairs of concepts in

A∗ and the second summation is computed over all

shapes-in-interest.

3.3. Coverage of ACE, k-means, and PCA

Figure 7 shows Coverage of ACE [5], k-means, and PCA

(with k = 15). We can observe for ACE that, although some

concepts tend to be dominated by one shape (e.g., Cpt.1

captures S.5), most of the concepts are less discriminate.

For k-means, one concept captures only one shape, which

leads to high Purity. However, the completeness is not as

good as BotCL (refer to Figure 6b of the main paper). For

example, Coverage Cpt.5 over S.1 is less than 0.6. In ad-

dition, PCA does not extract enough meaningful concepts.

3.4. Impact of Number k of Concepts

As shown in Figure 8, we can observe that BotCL out-

performs others regardless of k in all metrics except Pu-

rity. When 0 ≤ k ≤ 15, all metrics mostly improve with

k. However, a larger k harms Completeness and Purity

of ACE and the Distinctiveness of PCA. When k > 15,

there are no obvious changes for all methods on all met-

rics. Interestingly, k-means achieves the best Purity for any

k. This means that features sufficiently discriminate differ-

ent shapes. However, its performance over other metrics is

mostly much lower than BotCL’s.



4. Details on User Study

4.1. Design of user study

Designing a user study for evaluating the interpretabil-

ity of unsupervised concepts is not trivial. One straight-

forward way can be to ask multiple participants to write a

description for each concept by reviewing e.g., the top-10

activated samples, but this approach poses an extra chal-

lenge in comparing free-form descriptions. Therefore, we

decided to provide a vocabulary for each dataset so that the

participants could choose some terms from it.

Table 2 shows our predefined vocabularies for MNIST

and CUB200. For MNIST, we set the number k of con-

cepts to 20, but only 8 of them are activated, and the others

are never activated as shown in Figure 1b. Therefore, we

only show the most activated images of these 8 concepts

to the participants. The vocabulary consists of two groups,

position and shape. These groups are combinatorial; the

participants choose one from each to describe the concept.

We found that some concepts cover two different elements

of the digits, so we allow the participants to specify two

pairs of position and shape. For example, a participant may

choose upper and a horizontal line as well as lower and a
(part of) curve for Cpt.11 (refer to Figure 1b, as it involves

two highlighted regions. When no consistent concept can

be found in the provided samples, participants can choose

None of them. For CUB200, all 20 concepts learned from

a subset with n = 50 classes are presented. The vocabu-

lary is defined based on the terms related to birds, falling

into five groups (i) Body Part, (ii) Color, (iii) Texture, (iv)

Action, and (v) Background. Each group requires to choose

one term. Otherwise, a participant can choose None of them
when no consistent concept can be found. We provide the

screenshot of our user interface in Figure 9 and 10.

4.2. Metrics

We designed four metrics to evaluate learned concepts

based on the user study:

• Concept discovery rate (CDR): This metric is the ra-

tio of participants who can successfully find a mean-

ingful concept in given samples, i.e., the ratio of

participants who selected terms other than None of
them. This metric directly indicates how human-

understandable the learned concepts at a conscious

level.

• Concept consistency (CC): This metric involves the

consistency of responses of a pair of participants for

one concept, measuring inter-participant differences in

the perception of a concept. Let Rgi denote participant

i’s response on group g, which is one of the terms in

the group g. CC is formulated as :

CC =
∑
g∈G

wgrg
1

|P|
∑

(i,j)∈P
I(Rgi, Rgj), (13)

where I is the indicator function that gives 1 when

Rgi = Rgj , and 0 otherwise. G is the set of all groups,

and P is the set of all possible pairs of participants.

For MNIST, we expand the groups by making all pos-

sible combinations of positions and shapes because it

is more natural to see the position group as modifiers.

Therefore, for MNIST, |G| = 1 and this single group

contains 3 × 8 = 24 terms. We introduce wg to com-

pensate for the imbalance among the number of times,

one term of each group is selected so that a group that

is used many times can contribute more to the final

score. wg is the ratio of times in which one term in

group g is selected overall responses. rg is a discount

factor for None of Them. Let η be the number of all

pairs of participants and η′g the number of pairs whose

responses for group g are both non-None of Them. We

define the discount factor as rg = 1− η′g/η.

• Mutual information between concepts (MIC): This

metric measures the similarity of the response distribu-

tion over all possible pairs of concepts. Letting H de-

note the concatenation of histograms Hg for all group

g and H ′ is the same concatenated histogram, but for

a different concept, it can be formulated as follows:

MIC = MI(H,H ′), (14)

where MI gives the mutual information between H
and H ′. Note that for MIC, the statistics (the mean

and standard deviation) are computed over all possible

pairs of concepts, whereas for the other three metrics,

they are computed over all concepts.

For comparison, we conducted an extra round of user

study with manually labeled concepts and random concepts.

To be consistent with BotCL’s setting, we used the same

number of concepts (8 for MNIST and 20 for CUB200) as

well as the number of participants (20 for MNIST and 30

for CUB200). For manually labeled concepts, we picked

out a (combination of) terms from our vocabulary to make

a concept and selected 10 images that contained the con-

cept. We then manually annotated the region corresponding

to the concept in each image. This renders a certain cap for

each metric. For random concepts, we randomly selected

10 samples for each concept and randomly generated high-

lights for each sample; therefore, there barely be a consis-

tent concept within the samples. Figures 13–16 show some

examples of manually labeled and random concepts for both

MNIST and CUB200.



Table 2. Vocabulary used in the user study.

Dataset Group Vocabulary

MNIST Position (3) upper, middle, lower

Shape (8) the end of a slanted vertical line,

the end of a vertical line,

a (part of) curve,

a (part of) right-open curve,

a circle,

a white-black-white pattern,

a horizontal line,

the edge around a curve/line

CUB200 Body Part (9) head, wing, leg, beak, crawl, breast, tail, neck, back

Color (10) red, grey, beige, black, yellow, brown,

white, blue, green, colorful

Texture (2) striped, spotted

Action (4) flying, swimming, climbing, perching

Background (5) sea, tree, sky, grass, land

We show the distributions of participants’ answers in

Figure 11 and 12. For MNIST, we can find that most con-

cepts are recognized to be meaningful. The participants

tend to choose the same term for one concept, e.g., the op-

tion for Cpt.8 mostly described by lower and an end of a
slanted vertical line. However, we also observe that Cpt.5

cannot be identified by most of the participants, as its high-

lighted regions are too weak and hardly noticeable as shown

in Figure 1b. For CUB200, we show the distribution of each

group in the first five columns, and the last column shows

the number of participants who selected None of them. We

find that most of the learned concepts in CUB200 are mean-

ingful, as the number of None of them is small for most

concepts. Participants’ responses are mostly distributed in

Body Part (especially Wing and Leg), Color (Black), and

Action (Perching).

From this user study, we would conclude that the con-

cepts learned by BotCL are recognizable, individually con-

sistent, and mutually distinct for humans, comparable with

manually labeled concepts, which means that BotCL can

potentially apply to a wide range of applications that require

interpretability.



Figure 9. User interface of the user study for MNIST.



Figure 10. User interface of the user study for CUB200.



Figure 11. BotCL’s distribution of responses for MNIST.



Figure 12. BotCL’s distribution of responses for CUB200.



Middle white-black-white pattern Bottom a circle

Bottom the end of a slanted vertical line Upper a horizontal line

Bottom a (part of) curve Upper  a (part of) right-open curve

Figure 13. Examples of manually labeled concepts for MNIST.

Figure 14. Examples of random concepts for MNIST.



Tail
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Head

Figure 15. Examples of manually labeled concepts for CUB200.

Figure 16. Examples of random concepts for CUB200.



5. Comparison to existing XAI methods
BotCL aims at learning concepts, which is completely

different from per-pixel importance-based XAI methods.

Therefore, the explainability scores tailored for these XAI

methods are not the main concern of this paper. Yet, com-

paring BotCL with major XAI methods gives strong evi-

dence of its explainability. For this comparison, the atten-

tion of each concept can be merged into an overall explana-

tion ā by the weighted sum as

ā =
1

k

∑
κ

aκzωκ, (15)

where ω is the ground-truth class. We adopt four evaluation

metrics, including Insertion area under curve (IAUC) and

deletion area under curve (DAUC) are the metrics designed

in [7], Stability [1], and Infidelity [13].

IAUC is calculated by gradually adding pixels (in the

order of importance) to a blank image and seeing how the

prediction confidence evolves. The prediction confidence

should rise quickly if the pixel-adding process is guided by

an explanation that well understands the model and thus can

point out the most important pixels. In contrast, DAUC is

calculated by gradually removing pixels (in the order of im-

portance) from the original image. Similarly, the prediction

confidence should drop quickly if the pixel-removing pro-

cess is guided by an explanation.

Stability is quantified by Lipschitz estimation to mea-

sure how stable the explanation method performs when the

input is perturbed with minor noises. It can be formulated

as follows:

Stability =
‖Eγ(x)− Eγ(x′)‖2

‖x− x′‖2 , (16)

where x is the original input and x′ is the perturbed input.

γ is a model (i.e., a composition of feature extractor Ψ and

classifier f , and Eγ is the function to generate an explana-

tion of model γ. Adding minor white noise to the input

image should not have a significant impact on the predic-

tion result. However, the explanation may change a lot if

the method is instability.

Infidelity measures the consistency between input per-

turbations and consequent significant explanation changes.

It is formulated as follows:

Infidelity = EI∼μI
[(I�Eγ(x)−(γ(x)−γ(x−I)))2], (17)

where I is a significant perturbation to the input with one

probability measure μI , and the variables (i.e., I and Eγ) are

vectorized if necessary. The paper [13] provides multiple

options for μI , and we chose μI = N (0, σ2).
In addition, the explainability of the existing XAI meth-

ods is evaluated with the baseline ResNet [6] model, which

uses a single FC as the classifier, while our results are ob-

tained on BotCL, which uses the same ResNet model (with-

out the FC classifier) as the backbone. In Table 3, we can

see that BotCL achieves the best scores in stability and in-

fidelity, and is among the best for IAUC/DAUC. BotCL is

slightly worse than the best results in IAUC is that BotCL

requires the activations of enough number concepts to lead

to the correct classification, for which more pixels are nec-

essary. Similarly, BotCL works well even if some concepts

are not activated. More pixels need to be masked to change

the output, which implies BotCL’s robustness.



Table 3. Evaluation of BotCL and existing XAI methods using explainability metrics.

CUB200 ImageNet

Methods Stability ↓ Infidelity ↓ IAUC ↑ DAUC ↓ Stability ↓ Infidelity ↓ IAUC ↑ DAUC ↓
LIME [8] 0.175 0.150 0.664 0.133 0.211 0.398 0.624 0.154

CAM [14] 0.170 0.138 0.695 0.114 0.208 0.372 0.678 0.135

GradCAM [9] 0.155 0.142 0.712 0.110 0.180 0.358 0.682 0.130

GradCAM++ [2] 0.168 0.135 0.731 0.099 0.188 0.360 0.687 0.121

Score-CAM [11] 0.160 0.122 0.725 0.102 0.176 0.355 0.697 0.118
SS-CAM [10] 0.166 0.130 0.698 0.109 0.191 0.377 0.675 0.133

BotCL 0.102 0.051 0.718 0.105 0.125 0.341 0.680 0.131
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