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Example Aggregation Weights
To analyze how CondHead learns to consolidate the

class-wise knowledge into the expert prediction heads, we
plot the aggregation weights for the dynamically aggregated
head on some example object categories. As shown in Fig-
ure 1, we observe evident clustering of the weight distri-
bution on object categories with close semantic meaning.
For example, the aggregation weights on horned cow, shep-
herd dog and black sheep mainly attend to the first 12 expert
heads. This is likely because these are all animals and with
similar body architecture and pose. Similarly, we observe
the school bus, cabin car and tow truck attend mainly to
the 8th to 22th expert heads (Figure 1 (b)). the thermos
bottle, wineglass and beer can attend mainly to the 18th to
32th expert heads (Figure 1 (c)). On the other hand, the
detailed weight distribution differ for these highly attended
expert heads, this may attribute to the different appearance
of these categories. It seems CondHead learns to cope with
the difference with compositional knowledge from multiple
expert heads.

More Implementation Details

Architectural Illustration and Training Details The pro-
posed CondHead does not involve complex training strate-
gies, it is simply trained as a straightforward replacement
of standard box regression and mask segmentation heads.
Fig. 2 gives an architectural illustration. Concretely, OVR-
CNN and RegionCLIP first pre-train the visual-semantic
representation and then train open-vocabulary detection by
initializing with the learned representation. CondHead is
employed in the second-stage training by replacing the orig-
inal box/mask heads. As for ViLD, CondHead is simply
trained together with its text-embedding transfer (ViLD-
text) and image embedding distillation (ViLD-image), by
replacing the original box/mask heads. The text embedding
from the CLIP language encoder is used as the semantic
embedding for RegionCLIP and ViLD, and the BERT lan-
guage embedding is used as the semantic embedding for
OVR-CNN. Other hyper-parameters such as training sched-

ules follow these baseline methods.
Temperature Annealing As discussed in Section 3.2 of
main paper, we optimize the expert heads with a tempera-
ture annealing strategy, i.e., applying large temperature dur-
ing the early training epochs and gradually annealing the
temperature to a small value to ensure good dynamics of
Softmax output. Concretely, we set the temperature to 20.0
and linearly decay it to 1.0 during the first 5k iterations.
Integrating Shapemask into CondHead Shapemask [2]
introduces shape prior and multi-stage refinement to
achieve strong class-agnostic instance segmentation, which
is validated on the partially supervised instance segmenta-
tion task [1]. This prior-based design can be integrated into
CondHead to further improve its segmentation quality on
open vocabulary objects.

As shown in Figure 3, we introduce the semantic con-
ditioning on each stage of Shapemask [2], i.e., shape esti-
mation, coarse mask prediction and shape refinement. Con-
cretely, the shape distribution weights are dynamically gen-
erated based on the semantic embedding, the weights are
used to average the shape priors to obtain the segmenta-
tion prior. Then the two consecutive convolution kernels
within the coarse mask prediction module are conditionally
parameterized. This is conducted with a set of dynamically
combined expert convolution kernels, same as introduced in
Section 3.2 of main paper (dynamically aggregated head).
Based on the coarse mask prediction, the three consecu-
tive convolution kernels within the shape refinement mod-
ule are similarly parametrized and utilized to obtain the re-
fined mask segmentation result.

The above are used to instantiate the dynamically aggre-
gated head stream of CondHead (i.e., B̂), the original dy-
namically generated head stream (Ḃ) is maintained as intro-
duced in Sec. 3.2.

The Effect of Architectural Instantiation

We exam the effect of architectural instantiation on
CondHead, specifically with the depth and hidden dimen-
sion of the networks.
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Figure 1. Example aggregation weight distribution. Dynamic aggregation weight on some example object categories of LVIS. The hori-
zontal axis corresponds to the index of expert heads. The vertical axis corresponds to the normalized weight value. The weights are from
a CondHead model based on RegionCLIP. The weight indexes are permuted to better show trends of distribution.



Figure 2. Left: illustration of standard box regression head, the learnable parameter is θ. Right: illustration of CondHead architecture, the
learnable parameters are θ1, θ2, ..., θH , ϕ, and φ. While box regression (B) is illustrated here, the mask segmentation (M) is similar.

Figure 3. Integrating Shapemask into CondHead. We omit the architecture design and only depicts the parametric components that
are affected by the proposed CondHead. Dynamic Generation: the shape distribution weights are directly generated on the semantic
embedding. Dynamic Combination: the convolution kernels are generated with the proposed dynamically aggregated expert heads.

A D
depth hidden dimension depth hidden dimension

1 2 3 128 256 384 1 2 3 128 256 384
APb

r 19.0 19.9 20.1 19.3 19.9 19.7 19.0 19.9 19.9 19.5 19.9 19.8
APm

r 18.7 20.0 20.0 18.9 20.0 19.7 19.4 20.0 20.1 18.9 20.0 19.6

Table 1. The effect of architectural setting, with dynamic aggregation weight generator (A) and dynamic parameter generator (D). The
hidden dimension is fixed at 256 when evaluating the effect of depth. The depth is fixed at 2 when evaluating the effect of hidden dimension.
The experiments are conducted on LVIS, with RegionCLIP model based on ResNet-50 backbone.

Bh Mh

depth hidden dimension depth hidden dimension
1 2 3 128 256 384 2 3 4 128 256 384

APb
r 18.4 19.6 19.5 18.3 19.6 19.8 - - - - - -

APm
r - - - - - - 19.4 20.0 20.0 19.6 20.0 19.9

Table 2. The effect of architectural setting, with the expert box regression heads {Bh} and mask segmentation heads {Mh}. The hidden
dimension is fixed at 256 when evaluating the effect of depth. The depth is fixed at 2 when evaluating the effect of hidden dimension. The
box heads are instantiated as fully connected networks, and the mask heads are instantiated as convolution networks. The experiments are
conducted on LVIS, with RegionCLIP model based on ResNet-50 backbone.

• Dynamic aggregation weight generator. As shown in
Table 1, the performance improvement is significant
when increasing the depth from 1 to 2, while dimin-
ishes beyond that, e.g., 0.9 box AP improvement for
depth of 1 to 2 and 0.2 box AP improvement for depth
of 2 to 3, with dynamic weight generator A. Similar
observation holds for the hidden dimension. We thus
set the depth and hidden dimension to 2 and 256 for
the dynamic weight generator networks.

• Expert box regression heads and mask segmentation
heads. As shown in Table 2, for the set of expert heads,
the performance improvement is significant when in-
creasing the depth from 1 to 2, while diminishes be-
yond that, e.g., box AP of 18.4 to 19.6 for depth of 1
to 2 and 19.6 to 19.5 for depth of 2 to 3, Similar ob-
servation holds for the hidden dimension. We thus set
the depth and hidden dimension to 2 and 256 for the
expert box heads and mask heads.



Ḃ Ṁ
1 2 3 1 2 3

APb
r 19.9 20.0 19.6 - - -

APm
r - - - 20.0 19.7 19.6

Table 3. The effect of architectural setting, with the dynamic gen-
erated box regression head Ḃ, and mask segmentation head Ṁ.
The hidden dimension is fixed at 4 due to the limited output dimen-
sion for direct parameter generation.The box heads are instantiated
as fully connected networks, and the mask heads are instantiated
as convolution networks. The experiments are conducted on LVIS,
with RegionCLIP model based on ResNet-50 backbone.

Object Detection Instance Segmentation
- Novel Base All - Novel Base All -
B 31.3 56.5 50.4 - 27.5 54.1 48.1 -
Cd 33.7 58.0 52.2 - 29.7 55.8 49.5 -
Cdv 31.9 56.6 50.7 - 28.4 54.7 48.5 -
Cde 31.8 56.8 50.9 - 28.2 54.6 48.4 -
- APr APc APf AP APr APc APf AP
B 22.1 31.8 37.0 32.4 21.8 30.2 35.1 30.2
Cd 25.1 33.4 37.8 33.9 24.4 31.6 35.9 31.6
Cdv 22.5 32.1 36.9 32.5 22.1 30.6 35.3 30.5
Cde 22.9 32.5 37.2 32.8 22.5 30.6 35.4 30.8

Table 4. B, Cd denote baseline and CondHead, Cdv and Cde
denote dynamic condition on visual region feature and ensem-
bling/averaging multiple independently trained heads. Results are
obtained with RegionCLIP (ResNet50), on COCO and LVIS.

• Dynamically generated heads. We exam the depth of
dynamically generated box and mask heads. Due to the
limitation of network output dimension, we set the hid-
den dimension to 4. As shown in Table 3, increasing
the depth actually brings limited benefits, e.g., depth of
1 already achieves 19.9 box AP while depth of 2 and 3
obtain 20.0 and 19.6 box AP. Similar trend is observed
with the mask head. We thus employ simple 1-layer
network for the dynamic heads.

Based on all experiment results above, we set the depth
and hidden dimension as shown in the main paper Table 1.

Ablation on Dynamic Designs
We also validate the effectiveness of the proposed dy-

namic conditioning design by examining two other alterna-
tive designs: replacing the proposed dynamically combined
heads with two simple ensembling baselines (dynamic con-
ditioning on the visual region feature and simply ensem-
bling multiple independently trained heads during infer-
ence). As shown in Tab. 4, the performance drops compared
to CondHead, especially on novel categories, meaning the
proposed method helps better learn class-specific prediction
for novel categories.
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