
A. Discussion
A.1. Difference from matching methods

Our work focuses on the detection and description of
key-points, without a learnable matching strategy. We only
compare our method with other local features (including
hand-crafted and learning-based methods) for a fair eval-
uation during the experiments. All the matching results
in Table 1, Table 3, and Table 4 are based on the built-
in Nearest-Neighboring matcher, instead of additional
learnable matching model [42, 62] or end-to-end matching
method[20, 48]. Furthermore, our learning transformation-
predictive representations can be used in various local fea-
tures from CNN- to Transformer-based. Finally, the learned
local features can be taken as the input of matching methods
to produce better image matching and visual localization re-
sults like HLoc[11, 42].

A.2. Self-supervised learning in local features
Recently, a surge of interest has emerged in self-

supervised contrastive learning for deep neural networks.
Based on the self-supervised pre-trained backbone, the fine-
tuned or linear-projected models show competitive or bet-
ter performance on downstream computer vision tasks (e.g.,
classification, detection, and segmentation). While our self-
supervised TPR is trained with single-stage joint learning,
different from the above two-stage cascaded learning meth-
ods.

On the other hand, learning local features is a problem
that cannot be tackled by standard supervised training, as
observed in previous works[11, 60]. Furthermore, the local
features are ill-defined and are hard to manually annotate.
We thus treat the training local features as a self-supervised
task with the detection and description loss function. Our
TPR uses affine adaption and data augmentation to generate
the ground-truth correspondences, supervising the detector
and descriptor of local features. Here we report the train-
ing data (fewer constraints is better), model size (smaller is
better), and the dimension of the descriptor (lower is better)
of learning-based methods in Table 5. Our method requires
no SfM data or extra information, which is self-supervised
only on the images from the web, which are generally easy
to collect and scale up.

A.3. Difference from soft labels in Teacher/Student
Networks

Previous methods set all the similarities of positive pairs
as “1”, which can be considered as the inductive bias of
the contrastive learning models. Our TPR method trains
the local features with only positive pairs. Therefore, we
soften the hard label “1” into the soft objectives for differ-
ent positive pairs with different transformation scale. Com-
pared with using one-hot embedding to train the model, soft

Method Training Data Model(MB) Dim

D2-Net[12] SfM data 30.5 512
DELF[35] landmarks data 36.4 1024
LF-Net[36] SfM data 31.7 256

SuperPoint[11] synthetic&web images 5.2 256
R2D2[40] web images, SfM data 2.0 128
Disk[52] SfM data 1.1 128

Ours(VGG) web images 30.5 512
Ours(TR) web images 57.3 128

Table 5. The training data of learning-based methods.

labels have been widely adopted in knowledge distillation
(KD), i.e., Teacher/Student Networks. The soft labels pro-
duced by the pre-trained Teacher model, are different from
our soft labels predicted from curriculum learning and self-
supervised generation learning in §3.3. Our joint learning
process is single-stage, requiring none of the pre-trained
Teacher models. Furthermore, our soft labels are predicted
to fix the label noise caused by the false positive pairs with
over-strong transformation. While the one-hot embedding
in KD is usually human-labeled, which is the correct label.

B. Experimental results
B.1. Trajectory visualization in visual odometry

We report the results of the Visual Odometry localization
on KITTI dataset in Table 3 and trajectory visualization re-
sults in Figure 4. The sequences 04 and 05 have different
motion range as (0.5 ⇥ 394)m and (479 ⇥ 426)m, differ-
ent length of sequences as 272 and 2762, respectively. In
sequence 04, the camera’s motion trajectory is basically a
straight line. With relatively simple motion trajectories (se-
quence 04), both SuperPoint [11] and our method based on
Transformer show good localization performance. How-
ever, in the more complex trajectory (sequence 05), our
method significantly outperforms the previous method in
terms of localization error. In addition, our method achieves
the best performance in almost all sequences (00-10) ac-
cording to RMSE in Table 3. We also report the running
time in Table 3, our method does not introduce signifi-
cant computational complexity compared to previous CNN
methods, which can run real-timely.

B.2. Image matching results
We also report the visualization matching results on

the HPatches dataset [2] in Figure 5. The local features
are generated by the networks with swin transformer [27]
blocks, which are trained with our learning transformation-
predictive representation methods. The matching results are
also based on the built-in nearest-neighboring matcher.



Figure 4. Visualization of 3D trajectory localization error of different key-points on KITTI 04 and 05 sequences. The green and red
line represent the estimated and the ground truth trajectory, respectively.
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Figure 5. Visualization of matching results on HPatches.
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