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A. Training for Vehicle Segmentation

The training details for vehicle segmentation in Setting
1 and Setting 2 are slightly different from map segmenta-
tion. Also, we adopt Swin-Tiny [5] and PointPillars [3] as
the feature extractors for image and LiDAR point cloud, re-
spectively. The BEV feature pyramid decoder (BEV-FPD)
uses a three-layer model with a trade-off between the accu-
racy and inference speed. We train the whole network for
15 epochs with 2 NVIDIA RTX 2080Ti GPUs. The learning
rate is 1.5e−3, which decreases by a factor of 10 at the 10th
epoch. The image size is set to 352× 128 during training.

B. Additional Results

B.1. Map Segmentation

More Visual Results for BEV-FPD. We provide more vi-
sual results from the output of LiDAR2Map with different
BEV-FPDs. In Fig. A1, the predicted semantic maps are
gradually refined and become more accurate with the deep-
ening of the number of layers, which further indicates the
effectiveness of BEV-FPD on promoting our LiDAR2Map.
Comparison Under Different Weather and Light Condi-
tions. As illustrated in Tab. A1, we compare LiDAR2Map
with the state-of-the-art methods including HDMapNet-
Fusion [4] and BEVerse [6] in different conditions. We em-
ploy PointPillars [3] as LiDAR backbone and 6-layer BEV-
FPD for LiDAR2Map. Our method achieves the stable seg-
mentation accuracy and outperforms other methods under
different weather and light conditions. Fig. A2 provides
the qualitative comparison in several typical scenarios. Li-
DAR2Map presents the superior capability in sunny, rainy
and nighttime compared to HDMapNet-Fusion [4] and BE-
Verse [6]. Fig. A3 further reports more map predictions of
our LiDAR2Map.

*Corresponding author is Jianke Zhu.

Method Modality Rainy Night All
HDMapNet-Fusion [4] Camera & LiDAR 38.7 39.3 44.5

BEVerse∗ [6] Camera 48.8 44.4 51.7
LiDAR2Map (Ours) LiDAR 49.6 49.2 57.4

Table A1. Map segmentation results under different weather and
light conditions on the nuScenes dataset. “∗” means the results are
obtained from its official public model.

B.2. Vehicle Segmentation

For vehicle segmentation, we provide the qualitative re-
sults on the nuScenes dataset with Setting 2 in Fig. A4. It
obviously indicates that our method obtains the accurate ve-
hicle predictions in different scenes.

C. Limitations and Future Work
The online Camera-to-LiDAR distillation scheme in our

method incurs a certain amount of computation during the
training, which increases the overall training time. Besides,
the semantic map construction task relies on high-definition
map annotations for the network training, which are only
available in few datasets [1]. This limits the application of
semantic map to more general autonomous driving scenar-
ios. In the future, we will try to speed up the training pro-
cess and explore the potential of LiDAR2Map with weakly-
supervised forms, such as open street map [2].
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Figure A1. Additional visualization comparisons of LiDAR2Map with different BEV-FPDs on the nuScenes dataset.
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Figure A2. Qualitative results under various conditions. We compare our LiDAR2Map with other advanced approaches, including
HDMapNet-Fusion [4] and BEVerse [6].
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Figure A3. Additional visualization on map segmentation of LiDAR2Map with cloudy/rainy and day/night condition scenes.
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Figure A4. Visual vehicle segmentation of LiDAR2Map with cloudy/rainy and day/night condition scenes.
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