
Supplementary Material - MDL-NAS: A Joint Multi-domain Learning
Framework for Vision Transformer

A. Gradient estimation for Si

In mask sharing policy, we introduce scoring parameters
Si = [Sj

i ] for channels in the i-th linear layer, where j =
1, 2, ..., Cmax

out , and define the indicator function as follows:

I(Sj
i ) =

{
1, if Sj

i ≥ THr

0, otherwise.
(1)

Then, we can obtain the parameter sharing mask Mi ∈
RCmax

out as follows

Mi = [I(S1
i ), I(S2

i ), ..., I(S
Cmax

out
i )]. (2)

where Mi is used to derive the task-share and task-specific
weight:

wshare
i = Wi[: cout, : cin]⊗Mi[: cout], (3)

wspe
k,i = W spe

i [: cout, : cin]⊗ (1−Mi)[: cout], (4)

where ⊗ denotes element-wise multiplication; k denotes the
task index, k = 1, 2, ...,K.

Finally, we can obtain the current weight as wk,i by

wk,i = wshare
i + wspe

k,i , (5)

In the backward pass of the network, the gradient of Sj
i

is formulated as:

∇Sj
i
wk,i =

∂wk,i

∂I(Sj
i )

∂I(Sj
i )

∂Sj
i

. (6)

However, such optimization problem cannot be directly op-
timized with stochastic gradient descent since the gradient
of the indicator function I(·) is zero at almost all points and
undefined at THr. To make the problem learnable, we use a
straight-through gradient estimator. That is, modifying the
backward pass and using:

∇Sj
i
wk,i =

∂wk,i

∂I(Sj
i )
. (7)

B. Searching space

For non-hierarchical vision transformer (ViT), following
AutoFormer [2], we set the embedding dimension, MLP ra-
tio, heads num, and share ratio are set to {528, 572, 624},
{3, 3.5, 4}, {8, 9, 10}, {0.4, 0.5, 0.6} respectively for all
stages. In all experiments, the scaling factor dh and net-
work depth are set to 64 and 16, respectively Note that the
heads number and MLP ratios are varied across layers.

For hierarchical vision transformer (Swin Transformer),
the number of blocks, embedding dimension, heads num-
ber, and MLP ratio are set to {2, 2, {7, 8}, {1, 2}}, {{96,
128}, {160, 192}, {416, 448}, {704, 746}}, {{2, 3}, {5,
6}, {11, 12, 13}, {19, 20, 21}} and {{2, 2.5, 3}, {2.5,
3, 3.5}, {3.5, 4, 4.5}, {3.5, 4, 4.5}}respectively for four
stages. We set window size to 14 for the second and third
stage. The scaling factor dh is set to 32 in all experiments.
For fine search space, we search shared ratio for FFN layer
and MHSA layer in each stage, with shared ratio setting
to {{0.5, 0.7, 0.9}, {0.5, 0.7, 0.9}, {0.3, 0.5, 0.7}, {0.1,
0.3, 0.5}} respectively for four stages. Note that FFN layer
and MHSA layer have two identical yet independent search
space.

C. Implement details in supernet pretraining

Implement details of learning features from multiple
domains. Since each task has its own domain, we use mul-
tiple GPUs to optimize the tasks, where the task-shared and
task-specific parameters are optimized in the global group
and task-specific group respectively, which is implemented
by defining multiple communication groups in DDP of Py-
Torch. In each training iteration, we sample a subnet for
each task from the search space and update its correspond-
ing weights in MDL-NAS while freezing the rest. For task-
shared parameters, we average their gradients across all
GPUs. Thus, the gradient vectors of shared parameters on
all GPUs are equivalent. If we ensure that the initialization
of parameters, the learning rate, and weight decay for each
task are the same, we can finally get task-shared parameters
for all tasks. For task-specific parameters, we average their
gradients across GPUs within the task-specific group.

For MDL-NAS equipped with non-hierarchical vision



L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16

MDAL-NAS†+mask
classification

Embed Dim 528 528 528 528 528 528 528 528 528 528 528 528 528 528 528 528
Heads Num 9 9 9 9 10 10 9 9 9 10 9 10 10 9 9 9
MLP Ratio 3 3 3 3 3 3 3 3 3 3 3.5 4 3 3 3 3
Share Ratio 0.4 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.4 0.4 0.4

MDAL-NAS†+mask
detection

Embed Dim 576 576 576 576 576 576 576 576 576 576 576 576 576 576 576 576
Heads Num 9 10 9 9 10 10 9 10 10 10 9 9 9 9 9 9
MLP Ratio 3 3 3 3.5 4 3.5 3 3 4 3 3.5 3.5 4 3.5 3.5 4
Share Ratio 0.5 0.6 0.5 0.5 0.4 0.5 0.5 0.4 0.4 0.5 0.4 0.6 0.4 0.4 0.6 0.4

MDAL-NAS†+mask
segmentation

Embed Dim 624 624 624 624 624 624 624 624 624 624 624 624 624 624 624 624
Heads Num 9 9 10 9 9 9 10 10 10 9 10 9 10 10 9 10
MLP Ratio 4 4 3.5 4 3.5 3.5 3.5 3.5 4 3 4 3.5 3.5 4 4 3.5
Share Ratio 0.5 0.5 0.4 0.4 0.4 0.6 0.5 0.4 0.6 0.5 0.5 0.4 0.4 0.6 0.6 0.6

MDAL-NAS†+seq
classification

Embed Dim 528 528 528 528 528 528 528 528 528 528 528 528 528 528 528 528
Heads Num 9 10 9 10 10 10 10 10 9 10 9 9 9 9 9 9
MLP Ratio 3.5 3 3 3 3 3.5 4 4 4 4 4 3.5 3 4 4 3.5
Share Ratio 0.6 0.4 0.5 0.6 0.6 0.4 0.5 0.4 0.5 0.6 0.4 0.4 0.4 0.5 0.6 0.6

MDAL-NAS†+seq
detection

Embed Dim 624 624 624 624 624 624 624 624 624 624 624 624 624 624 624 624
Heads Num 9 9 10 9 10 9 10 9 10 9 10 10 9 9 9 10
MLP Ratio 3 4 3.5 3.5 3.5 3 3.5 3 4 3 4 3.5 3 3.5 3.5 3.5
Share Ratio 0.4 0.5 0.5 0.4 0.4 0.6 0.5 0.6 0.5 0.4 0.5 0.5 0.6 0.5 0.6 0.6

MDAL-NAS†+seq
segmentation

Embed Dim 624 624 624 624 624 624 624 624 624 624 624 624 624 624 624 624
Heads Num 9 9 9 10 10 9 10 9 10 10 9 10 10 10 10 10
MLP Ratio 3.5 3 4 4 4 4 4 3.5 3.5 4 4 3.5 4 3 3 4
Share Ratio 0.4 0.5 0.5 0.4 0.4 0.6 0.6 0.6 0.6 0.6 0.4 0.6 0.6 0.6 0.4 0.6

Table 1. Architectures of MDAL-NAS-B† with mask or sequential sharing policy for different vision tasks.

downsp. rate
MDL-NAS + mask

classification
MDL-NAS + mask

detection
MDL-NAS + mask

segmentation
MDL-NAS + seq

classification
MDL-NAS + seq

detection
MDL-NAS + seq

segmentation

stage1 4x

Embed dim 128 128 128 128 128 96
Heads Num 3 3 2 3 3 3
MLP Ratio 2 3 3 2 2.5 3
Depth 2 2 2 2 2 2
MHSA Share Ratio 0.9 0.9 0.7 0.9 0.5 0.9
FFN Share Ratio 0.9 0.9 0.9 0.9 0.5 0.9

stage2 8x

Embed dim 160 192 192 160 192 192
Heads Num 5 5 6 5 6 6
MLP Ratio 3.5 3.5 3.5 3 3 3.5
Depth 2 2 2 2 2 2
MHSA Share Ratio 0.7 0.7 0.9 0.5 0.5 0.9
FFN Share Ratio 0.7 0.9 0.5 0.5 0.5 0.9

stage3 16x

Embed dim 448 448 448 448 448 448
Heads Num 12 13 13 13 13 13
MLP Ratio 4 4.5 4.5 4 4 4
Depth 8 8 8 8 8 8
MHSA Share Ratio 0.9 0.7 0.7 0.7 0.5 0.7
FFN Share Ratio 0.9 0.7 0.7 0.7 0.5 0.7

stage3 16x

Embed dim 704 736 736 704 736 704
Heads Num 21 21 20 20 19 19
MLP Ratio 3.5 4.5 4.5 4.5 3.5 4.5
Depth 1 2 2 1 2 1
MHSA Share Ratio 0.5 0.5 0.5 0.3 0.5 0.1
FFN Share Ratio 0.5 0.3 0.5 0.5 0.5 0.5

Table 2. Architectures of MDAL-NAS-T‡ with mask or sequential sharing policy for different vision tasks.

transformer, we pre-train the supernet with the following
settings: AdamW optimizer with weight decay 0.05 and to-
tal 500 epochs, initial learning rate 2e-3 and minimal learn-
ing rate 1e-5 with cosine scheduler, 20 epochs warmup,
batch size of 2048, 0.1 label smoothing, and stochastic
depth with drop rate 0.1. We leverage 32 Nvidia Tesla
V100 GPUs to train the supernet. Data augmentation tech-

niques, including RandAugment, Cutmix, Mixup and ran-
dom erasing, are adopted with the same hyperparameters as
in DeiT [9] except the repeated augmentation.

For MDL-NAS equipped with hierarchical vision trans-
former, we train the supernet with the following settings:
AdamW optimizer for 300 epochs using a cosine decay
learning rate scheduler and 20 epochs of linear warm-up;



A batch size of 1024, an initial learning rate of 0.001, and a
weight decay of 0.05 are used. We adopt sandwich train-
ing [12] to optimize the weights of supernet, i.e., sam-
pling the largest, the smallest, and two middle models for
each iteration and fusing their gradients to update the su-
pernet. Data augmentation techniques, including RandAug-
ment, Cutmix, Mixup and random erasing are also adopted
with the same hyperparameters as in Swin [8].

D. Implement details in supernet finetuning

For MDL-NAS equipped with non-
hierarchical/hierarchical vision transformer, we employ
48/24 Nvidia Tesla V100 GPUs to finetune the supernet
for all tasks, that is, classification, segmentation and
detection takes up 16/8 GPUs respectively. For main
results in the paper, we define the total number of training
iterations as scheduler 3x based on object detection. In
all experiments corresponding to supernet finetuning, we
also leverage the sandwich training [12] rule. Note that
for all tasks, the training recipe is exactly the same so
as to derive task-shared parameters. The training recipe
for non-hierarchical/hierarchical vision transformer is
set as: AdamW optimizer with weight decay 0.05/0.05,
initial learning rate 8e-5/1e-4 with cosine scheduler, and
stochastic depth with drop rate 0.1/0.1. We set the batch
size 512/1024 for image classification, 16/16 for object
detection and 16/16 for semantic segmentation. Since
the length of each dataset is different, we define the total
number of training iterations based on object detection,
schedule 1× and 3×. Notably, the naive ViT employs
constant widths throughout all of its blocks, which is
not conducive to object detection. Thus, for MDL-NAS
equipped with non-hierarchical vision transformer, we
adhere to ViTDeT [7], employing the simple feature
pyramid from a single-scale feature map (without the
typical FPN design) and using window attention (without
shifting) supplemented by a small number of cross-window
propagation blocks.

E. Implement details in joint-subnet search al-
gorithm

Our proposed search algorithm inherits most of the prin-
ciples of the naive evolution search algorithm in SPOS [6].
We set the population size to 50 and number of generations
to 20. Each generation we pick the top 10 architectures
as the parents to generate child networks by mutation and
crossover. The mutation probalilty Pm is set to 0.1. Dur-
ing search process, we employ Top1 Acc. of classification,
APb of detection, and mIoU of segmentation as proxy score.
Thus, the total score S-Score is given by a linear sum of
above three proxy scores.

F. Downstream vision tasks experiment set-
tings

In this part, we provide some detailed experimental set-
tings of MDL-NAS in downstream vision tasks, including
object detection, semantic segmentation and pose estima-
tion.

Object detection. We conduct the object detection ex-
periments on COCO dataset. We replace the backbone of
Mask R-CNN with our discovered MDL-NAS transformer
architecture and compare its performance with other preva-
lent backbones, including CNNs and handcrafted trans-
formers. All the MDL-NAS models are conducted on
MMDetection [1]. In all experiments, we use multi-scale
training strategy during supernet finetuning (resizing the in-
put such that the shorter side is between 400 and 1400 while
the longer side is at most 1600).

Semantic segmentation. We choose ADE20K dataset
to test the representation power of MDL-NAS on semantic
segmentation task. ADE20K is a widely used scene parsing
dataset which contains more than 20K scene-centric images
and covers 150 semantic categories. The dataset is split into
20K images for training and 2K images for validation. All
the models are trained under MMSegmentation [3] frame-
work. For augmentations, we adopt the default setting in
MMSegmentation of random horizontal flipping, random
re-scaling within ratio range [0.5, 2.0] and random photo-
metric distortion. Stochastic depth with ratio of 0.1 is ap-
plied for all MDL-NAS models. All MDL-NAS models are
trained on the standard setting as the previous approaches
with an input of 512×512.

CUB-200-2011 classification. The CUB-200-2011
dataset [10] has a total of 200 bird categories, including
5,994 training images and 5,794 testing data. Each cat-
egory contains about 30 training data. The input image
is a 384×384 color image. We add the CUB-200-2011
dataset to MDL-NAS after it has been finetuned on clas-
sification, detection, and segmentation tasks. We freeze the
task-shared parameters and only leverage the task-specific
parameters to fit this new dataset. All the models are trained
under MMClassification [5] framework. In training stage,
data augmentation is performed through Random Crop and
Random HorizontalFlip while in testing phrase Center Crop
is used. The training recipe is set as: SGD optimizer, the
base learning rate 0.01 with cosine scheduler, weight decay
0.0005, the batch size of 8 and the total epochs 100.

We use the trained model on ImageNet by MDL-NAS-
B with mask sharing policy to finetune on CUB dataset
without freezing the task-shared parameters to get the new
model, whose top1 accuracy on ImageNet is 0.1%. Instead,
MDL-NAS can evade catastrophic forgetting.

Pose estimation. We choose image-based human body
2D pose estimation task to validate that our proposed MDL-



Classification Detection Segmentation S-Score

AutoFormer 15.0ms 110.4ms 54.8ms 176.4
MDL-NAS-B†+mask 14.1ms 113.3ms 55.7ms 180.9
MDL-NAS-B†+seq 15.8ms 112.9ms 57.6ms 181.7
Swin-T 14.0ms 37.6ms 55.5ms 171.8
MDL-NAS-T‡+mask 13.1ms 39.8ms 58.6ms 173.9
MDL-NAS-T‡+seq 14.0ms 38.9ms 60.8ms 174.6

Table 3. Latency of MDL-NAS compared with the baselines.

Top-1 Acc. APb mIoUss #Params (s) S-Score

MDL-NAS-B-AB4† 83.0 46.3 49.6 117M 178.9
MDL-NAS-B† + seq 82.9 46.6 49.9 117M 179.4
MDL-NAS-T-AB4‡ 81.6 43.0 45.2 57M 169.8
MDL-NAS-T‡ + seq 81.9 43.3 46.7 53M 171.9

Table 4. The efficacy of inside layer parameter sharing. #Params
(s) denotes the parameters of the shared backbone.

NAS is designed to allow incremental learning and evades
catastrophic forgetting. We evaluate the performance on the
COCO keypoint detection task. The train2017 set includes
57K images and 150K person instances annotated with 17
keypoints, the val2017 set contains 5K images. We add the
pose estimation task to MDL-NAS after it has been fine-
tuned on classification, detection, and segmentation tasks.
We freeze the task-shared parameters and only leverage the
task-specific parameters to fit the pose estimation task. All
the models are trained under MMPose [4] framework. We
use the top-down methods [11] and set the training recipe
as: Adam optimizer with the base learning rate 5e−4 that is
dropped to 5e−5 and 5e−6 at the 170th and 200th epochs,
respectively. The input image size is cropped to 256×192.
We report average precision with different thresholds and
different object sizes: AP, AP50, AP75, APM and APL.

G. Latency of MDL-NAS
We compare the latency of MDL-NAS with that of the

baselines, as shown in Tab. 3. The latency of these meth-
ods are measured on a Tesla V100 GPU. MDL-NAS-B†

with mask/sequential sharing policy surpasses AutoFormer
4.5/5.3 units under S-Score with comparable latency while
MDL-NAS-T‡ with mask/sequential sharing policy outper-
forms Swin-T by 2.1/2.8 units , further demonstrating the
efficacy of MDL-NAS.

H. Structures of MDL-NAS
Tab. 1 and Tab. 2 gives the transformer architectures

searched by our MDAL-NAS† and MDAL-NAS‡ with
mask or sequential sharing policy for different vision tasks
in the main results, respectively.

I. The effect of inside layer parameter sharing
In this part, we further investigate the efficacy of our pa-

rameter sharing policy that allows different tasks to share

Top-1 Acc. APb mIoUss #Params (t) S-Score

MDL-NAS-B† + mask (s) 83.0 48.4 46.2 293M 177.6
MDL-NAS-B† + mask (j) 82.6 48.2 50.1 235M 180.9

MDL-NAS-B† + seq (s) 83.1 48.3 46.4 311M 177.8
MDL-NAS-B† + seq (j) 82.9 48.0 50.8 256M 181.7

Table 5. Multi-domain learning vs separate learning.

partial parameter inside each layer and monopolize the rest.
A straightforward baseline to our parameter sharing policy
is that only allows different tasks either sharing or monop-
olizing all parameters in one layer. Specifically, we set the
fine search space of each layer in MDL-NAS-B/T as {0,
1} and jointly finetune the supernet for the three tasks (i.e.,
classification, detection and segmentation) with the same
training recipe (i.e., 1× training schedule) used in the ab-
lation study. Then, we use the proposed search algorithm
to search the optimal backbones for such baseline, which
is denoted as MDL-NAS-B/T-AB4. As shown in Tab. 4,
MDL-NAS-B/T with sequential sharing policy outperforms
MDL-NAS-B/T-AB4 by 0.5/2.1 units, respectively, further
demonstrating the efficacy of our parameter sharing policy
that uses task-shared parameters inside each layer for learn-
ing task-reciprocal features while using the rests as task-
specific parameters for mitigating conflicts.

J. Multi-domain learning vs separate learning
We retrain the searched architecture of MDL-NAS for

the three tasks separately. The results are reported in Tab. 5.
The overall performance of multi-domain training using
fewer parameters is much superior to that of separate train-
ing. As depicted in Fig. 2 in the main paper, we discuss
that some tasks are elevated whereas some have conflicts
against each other under multi-domain learning. Combin-
ing the results of Fig. 2 and Tab. 5 reveals that MDL-NAS
can minimize the conflict and enjoy benefits.

K. Limitation
In this work, we propose MDL-NAS, a unified frame-

work that concurrently learns multiple vision tasks under
different dataset domains. MDL-NAS is storage-efficient
since multiple models with a majority of shared parame-
ters in the backbone can be deposited into a single one.
However, from the experiments, we observe that the param-
eters of head network for some tasks are relatively large,
yet MDL-NAS does not consider the parameter sharing in
the head for all tasks. In the future, we would design an
encoder-decoder structure that enables all tasks to share pa-
rameters throughout the network rather than only backbone
network.

References
[1] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu

Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,



Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019. 3

[2] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin
Ling. Autoformer: Searching transformers for visual recog-
nition. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 12270–12280, 2021. 1

[3] MMSegmentation Contributors. MMSegmentation:
Openmmlab semantic segmentation toolbox and
benchmark. https : / / github . com / open -
mmlab/mmsegmentation, 2020. 3

[4] MMPose Contributors. Openmmlab pose estimation tool-
box and benchmark. https://github.com/open-
mmlab/mmpose, 2020. 4

[5] MMClassification Contributors. Openmmlab’s image clas-
sification toolbox and benchmark. https://github.
com/open-mmlab/mmclassification, 2020. 3

[6] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling. In
European conference on computer vision, pages 544–560.
Springer, 2020. 3

[7] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He.
Exploring plain vision transformer backbones for object de-
tection. arXiv preprint arXiv:2203.16527, 2022. 3

[8] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 3

[9] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
pages 10347–10357. PMLR, 2021. 2

[10] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. 2011. 3

[11] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines
for human pose estimation and tracking. In Proceedings of
the European conference on computer vision (ECCV), pages
466–481, 2018. 4

[12] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xi-
aodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling
up neural architecture search with big single-stage models.
In European Conference on Computer Vision, pages 702–
717. Springer, 2020. 3


