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A. Limitations

While we can verify that exploring and exploiting mini-
mum happy points are critical for ASFDA through a signif-
icant improvement, the existence of the MH points is chal-
lenging to prove due to the lacking of theoretical guarantees
and interpretability of deep networks. Further, ASFDA re-
lies on the well-trained source model that may be impaired
by some causes, e.g., model transfer, model sharing, and
source model training process. In these uncontrollable and
unforeseen circumstances, the robustness of ASFDA meth-
ods would face serious challenges.

B. Implementation details

Model Details. We implement our experiments on the
PyTorch platform. For a fair comparison, we adopt the
backbone of ResNet-50 [4] for Office-Home and Office31,
ResNet101 for VisDA-2017. Besides, we also add exper-
iments of ResNet-50 on VisDA-2017, VGG16 [12] and
Alexnet [7] on Office-Home and Office-31. We utilize
the same network architecture as SHOT and conduct label
smoothing as SHOT in the process of training the source
model. For all datasets without a train-validation split, we
view the all source data as a test set and train the optimal
source model using the test set as validation. The max-
imization number of epochs for Office-31, Office-Home,
and VisDA is set as 100, 50, and 10. Meanwhile, when we
train the target model, we train 20 epochs for Office-31 and
Office-Home, and 10 epochs for VisDA. We run three times
and report the average results. In the process of training,
we adopt minibatch SGD with momentum 0.9 and weight
decay 1e-3. The learning rate is set to 1e-2 for Office-31
and Office-Home, and 1e-3 for VisDA-2017. We adopt the
existing schedule: η = η0(1 + 10p)−0.75 [10], where η0 is
the initial learning rate and p is the training progress chang-
ing from 0 to 1. Besides, we set the batch size to 64 for
all the tasks. For the number of neighbors q, we set nine
for Office-31, twenty for Office-Home, and five for VisDA-
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2017. Besides, we set α = 3, β = 0.3, and o = 5 for all
datasets. Experiments are conducted on a TITAN Xp.

Labeling budget. In active source free domain adap-
tation, a few samples are utilized to aid the adaptation
process. Following the previous active domain adaptation
works [3, 15], we mainly shows the results of 5% actively
labeled target data. We also report the results of various
selection ratios, e.g., 1%,5%,..., 10%, for analysis.

Baseline implementation. The active domain adapta-
tion methods cannot be reproduced without the source data
in ASFDA, so we report the best results shown in papers
corresponding to our active source free domain adaptation,
such as AADA [13], EADA [15], and so on. Similarly, be-
cause the ELPT [8] does not open the code, we report its
original results. We now elaborate on our implementation
of other baseline algorithms:

(1) Base: we acquire the pseudo-labels of the target sam-
ples based on a deep clustering [9], and train the model with
entropy loss, KL divergence and the standard cross-entropy
loss. Here the pseudo-labels are not credible, so we apply
the weight β = 0.3 and α = 0.3 to all samples.

(2) Random: select samples randomly.
(3) Entropy [14]: select samples for which the model

has highest predictive entropy.
(4) BVSB (Best-Versus-Second-Best) [6]: select sam-

ples for which the the smallest difference between the top-2
predicted probabilities.

(5) LC (Least Confidence) [5]: select samples for which
the smallest of the maximum probability of model output.

(6)CoreSet [11]: CoreSet formulates active sampling as
a set-cover problem. We implement the CoreSet using the
released code: https://github.com/JordanAsh/badge.

(7) CTC (closet to its center ): select samples which are
the closet to their centers after the Kmeans clustering.

(8) BADGE (batch active learning by diverse gradi-
ent embeddings) [2]: BADGE ensures diverse batches
by running Kmeans++ [1] on ‘gradient embeddings’,
which incorporates model uncertainty and diver-
sity. We implement BADGE using the released code:
https://github.com/JordanAsh/badge.
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Table 1. Accuracy (%) on Office-Home of different networks with 5% labeled target samples.

Model Method Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg

Alexnet

Source-only 26.1 37.4 49.5 24.5 39.6 40.0 25.3 24.0 49.8 40.0 31.3 59.8 37.3
Base 30.7 50.3 56.2 34.5 51.4 53.4 33.0 26.8 58.9 44.1 36.2 64.9 45.0

Random 37.8 58.0 61.0 39.7 58.1 59.4 36.2 34.2 62.8 48.7 45.0 69.8 50.9
CTC 37.3 55.3 58.5 38.2 56.6 56.9 35.4 33.3 60.4 45.5 43.0 65.6 48.8

CoreSet [11] 36.1 55.1 59.9 38.9 57.9 58.8 38.0 31.3 62.4 47.7 42.0 69.1 49.8
BADGE [2] 37.3 54.7 59.7 39.3 58.3 58.1 38.8 33.3 63.6 49.1 43.1 69.1 50.4
Entropy [14] 38.3 56.1 62.7 40.5 59.0 60.7 37.3 35.9 64.6 48.8 45.3 71.0 51.7

BVSB [6] 39.2 57.7 62.8 39.7 60.1 61.5 36.7 36.7 64.9 48.9 45.8 71.6 52.1
LC [5] 39.0 56.8 63.4 39.8 59.7 60.6 37.4 36.7 64.9 48.5 45.8 71.4 52.0

MHPL 45.5 64.4 64.9 42.8 67.3 61.7 40.8 44.4 66.4 50.5 50.9 75.7 56.3

VGG

Source-only 35.2 59.8 69.4 48.0 60.5 62.6 46.7 30.8 70.5 58.8 35.4 74.3 54.3
Base 44.3 73.1 74.0 59.3 72.5 71.5 55.9 42.0 76.6 63.5 46.6 80.4 63.3

Random 52.6 77.0 76.9 61.8 76.8 74.9 58.7 49.4 78.8 66.3 53.7 83.3 67.5
CTC 50.8 74.3 76.0 60.3 75.2 73.5 58.2 47.9 77.3 64.9 52.1 81.0 66.0

CoreSet [11] 49.7 77.2 76.6 63.3 77.2 74.9 60.1 46.4 79.0 66.5 50.7 83.4 67.1
BADGE [2] 51.0 77.4 77.0 63.2 77.0 75.3 60.0 47.2 79.3 66.9 51.4 83.4 67.4
Entropy [14] 52.6 78.1 78.0 63.1 77.9 72.2 60.4 49.0 80.6 68.5 54.1 84.1 68.6

BVSB [6] 54.7 77.1 78.6 63.5 78.6 77.1 59.7 50.7 80.2 68.3 54.6 85.3 69.0
LC [5] 53.0 78.7 78.4 63.0 78.0 76.8 60.4 49.2 80.5 68.5 54.3 85.1 68.8

MHPL 60.4 82.4 80.5 66.7 82.3 78.4 63.5 56.9 81.9 70.8 59.3 87.2 72.5

Table 2. Accuracy (%) on Office-31 of different networks with 5% labeled target samples.

Model Method A→D A→W D→A D→W W→A W→D Avg

Alexnet

Source-only 53.6 47.9 37.9 94.2 36.4 97.8 61.3
Base 69.2 63.1 69.6 95.7 48.6 98.6 70.8

Random 73.1 68.2 58.2 95.9 55.4 99.6 75.0
CTC 71.5 65.5 56.3 95.6 52.7 99.0 73.4

CoreSet [11] 70.3 69.9 59.2 96.0 54.2 98.4 74.7
BADGE [2] 71.3 69.9 57.2 96.4 53.9 99.4 74.7
Entropy [14] 74.2 71.2 57.1 98.9 54.8 99.6 76.0

BVSB [6] 73.1 73.8 61.7 98.7 58.6 99.6 77.6
LC [5] 74.1 74.1 58.6 99.1 55.4 99.6 76.8

MHPL 81.1 78.6 68.9 98.5 67.0 100.0 82.4

VGG

Source-only 75.2 72.7 63.8 95.4 63.7 99.8 78.5
Base 88.0 87.2 72.9 97.2 71.6 99.8 86.1

Random 87.4 89.1 74.4 97.5 73.8 99.8 87.0
CTC 88.0 86.9 73.4 97.1 71.9 99.8 86.2

CoreSet [11] 89.0 88.7 75.1 97.5 74.1 99.8 87.4
BADGE [2] 89.2 88.1 75.5 97.5 73.3 99.8 87.2
Entropy [14] 87.8 89.1 77.7 98.2 74.7 100.0 87.9

BVSB [6] 91.6 88.4 76.3 98.5 75.2 100.0 88.3
LC [5] 90.8 88.9 77.2 98.5 75.3 100.0 88.5

MHPL 93.0 93.0 79.9 98.9 80.3 100.0 90.9

Methods (3), (4), and (5) are based on model uncertainty,
(6) and (7) are diversity-based, and (8) is a hybrid approach
that combines uncertainty and diversity.

Regarding implementation details, MHPL selects active
samples and learns selected samples with a proposed neigh-
bor focal loss compared with the base. In contrast to other
active strategies, MHPL explores more informative MH
points and exploits these MH points with a proposed neigh-
bor focal loss instead of the standard cross-entropy loss.

C. Additional experimental results
Full experimental results under different networks.

To further prove the effectiveness of MHPL, we conduct
experiments on Office-31 and Office-Home with different

backbones: VGG and Alexnet. We find two essential ob-
servations from the results in Table 1 and 2. (1) Even a
small set of labeled target data may bring larger perfor-
mance gains, which proves the practicality and effectiveness
of ASFDA. On average, when only 5% of the Office-home
target data is used for annotation, MHPL is 11.3% and 9.2%
higher than the base with Alexnet and VGG, respectively.
Similarly, the accuracy of MHPL is 11.6% and 4.8% higher
than the base on Office-31 with Alexnet and VGG, respec-
tively. (2) Our method MHPL could fully explore and ex-
ploit MH points which are crucial for ASFDA. As shown in
Table 1 and 2, the performance gains brought from MHPL
are significantly higher than other active strategies in all
tasks with VGG and Alexnet, especially in several challeng-
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Figure 1. Ablation studies on hyperparameters q, o and one-shot querying.

(a) initial pseudo labels (b) BVSB [6] (c) Entropy [14]

(d) CoreSet [11] (e) BADGE [2] (f) MHPL

Figure 2. Feature visualization for the source model with 5% actively labeled target data on Ar→Cl task. Different colors in (a) represent
different classes of pseudo-labels by clustering. Blue blocks include easily-adaptive source-similar samples with label-clean neighbors that
can be learned well by SFDA methods. Red blocks include the hard-adaptive source-dissimilar samples with label-chaotic neighbors. In
(b), (c), (d), (e), and (f), the dark green indicates that the pseudo-label is consistent with the true label, and light blue indicates the opposite.
The red stars indicate the selected samples based on different criteria, respectively.

ing tasks, e.g., Ar→Cl, Pr→Cl, Re→Cl, D→A, and W→A.
Ablation study on number of neighbors q. To study

the sensitivity to a crucial hyperparameter q, we run ablation
experiments on three tasks, Pr→Cl, Re→Ar, and Re→Cl,
in ResNet-50. As shown in Fig. 1 (a), utilizing 5% labeled
target data, results with q = 5/10/20/30/40 show that our
method is not sensitive to the choice of a reasonable q on
three tasks.

Ablation study on number of neighbors o in NDR. To
study the sensitivity to a hyperparameter o in neighbor di-
versity relaxation, we run ablation experiments on Ar→Cl
and Pr→Cl in ResNet-50. As shown in Fig. 1 (b), when o
= 0, the NDR is not being executed, and the model is not
performing well. The model’s accuracy is significantly im-
proved with the increase of o value. When the value of o is
larger, the accuracy gradually tends to be stable. We set o =
5 on all datasets.

Ablation study on one-shot querying. To further ver-
ify the effect of one-shot querying, we conduct the experi-

ments on Pr→Cl and Re→Ar to compare the effect with the
samples selected at different epochs of model training. The
results in Fig. 1 (c) and (d) verify that the samples chosen
by the source model are source-dissimilar and effective.

Feature visualization. As shown in Fig. 2, compared
with BVSB [6], Coreset [11], and BADGE [2], the samples
selected by our MHPL mostly fall into source-dissimilar
and label-chaotic regions. Even the samples chosen by En-
tropy [14] are also mostly label-chaotic, but they are not di-
verse. Therefore, the samples selected by our MHPL meet
all three conditions of minimum happy points: neighbor-
chaotic, individual-different, and source-dissimilar.

Ablation on focal loss. As shown in Fig. 3, with differ-
ent active sample ratios in Cl→Pr and Pr→Cl, the results
from focal loss are always higher than those from CE loss.

More ratios. Since LC [5] is the best approach in the
active strategy, we compare LC with our MHPL in different
ratios of active samples on the Pr→Cl and Re→Cl tasks.
For the two tasks shown in Fig. 4, our MHPL is always far
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Figure 3. Ablation study on focal loss. ‘MHPL w CE’ represents
replacing the focal loss with normal CE loss in MHPL.

0.010.050.09 0.20 0.30
Ratio (ρ) of active samples (%)

55

60

65

70

75

80

85

90

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

LC
MHPL

(a) Pr→Cl

0.010.050.09 0.20 0.30
Ratio (ρ) of active samples (%)

60

65

70

75

80

85

90

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

LC
MHPL

(b) Re→Cl

Figure 4. Comparison on more selective ratios.
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Figure 5. Ablation study on α.
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Figure 6. Ablation study on β.

superior to LC in different sample selection ratios.
Ablation study on hyperparameters α. We utilize 5%

and 10% active labeled target samples in the Cl→Pr task to
analyze the hyperparameter of α. As shown in Fig. 5 (a)
and (b), the accuracy with αPu is significantly higher than
that of cross-entropy loss. We set α = 3 on all datasets.

Ablation study on hyperparameters β. We utilize 5%
and 10% active labeled target samples in the Ar→Cl task to
analyze the hyperparameter of β. When β = 0, the perfor-
mance is worse as the DU

t is not utilized. With the increase
of β, the effect of the model first increases and then de-

creases, indicating that the model is supposed not to focus
more on DU

t . We set β = 0.3 for all datasets.
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