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single-scale multi-scale

global 83.0 82.8
local 83.0 83.3

(a) ViT-B

single-scale multi-scale

global 83.3 82.9
local 83.6 83.8

(b) Swin-B

Table 1. Decoupling local reconstruction and multi-scale supervi-
sions. We report the top-1 fine-tuning accuracy on ImageNet-1K.

A. More experiments
In this section, we provide more experiments to support

our work.

A.1. Decoupling local and multi-scale

To effectively guide the local layers, we propose multi-
scale supervisions for multiple local reconstruction tasks.
Here we decouple the local (or global) reconstruction and
multi-scale (or single-scale) supervisions to further under-
stand their relations. For global multi-scale reconstruction,
we conduct at the top layer of encoder and use separate de-
coders to predict multiple supervisions of different scales.
When the predictions have different scale with supervisions,
we use deconvolution/pooling options to rescale them for
matching supervisions. The results are shown in Table 1 and
the pre-training length is 100 epochs. As we can see, global
reconstruction prefers to single-scale supervisions, and us-
ing the supervisions of different scales to guide the same
layer could make confusion. Conversely, local reconstruc-
tion prefers to multi-scale supervisions, and multiple local
layers expect to learn the information of different scales.
Local reconstruction can achieve better performance than
the global one in most cases, and the gain increases when
using multi-scale supervisions.

A.2. Comparison with feature fusion

To explicitly guide the lower layers, we conduct recon-
struction task at multiple chosen local layers. The other
method is fusing the features of multiple local layers to the
top layer for global reconstruction [5]. It uses single-scale
supervision for avoiding confusion. We compare our local
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method acc

global 83.0
global with fusion 83.0

local 83.3

(a) ViT-B

method acc

global 83.3
global with fusion 83.5

local 83.8

(b) Swin-B

Table 2. Top-1 fine-tuning accuracy on ImageNet-1K. We com-
pare the global reconstruction, the global reconstruction with fea-
ture fusion and our local reconstruction.

reconstruction with this feature fusion method, and the re-
sults are shown in Table 2. Local reconstruction achieves
consistently better performance than feature fusion on both
columnar ViT [4] and pyramidal Swin [14]. For further ex-
ploration, we examine the gradient norm of each layer in
the encoder during training process. Concretely, we load
the checkpoint (state) of the median epoch in a complete
training schedule and then calculate the gradient norm of
parameters in each layer under this state. The results are
shown in Fig. 1. For other middle epochs, we observe the
same results. The lower layers have larger gradient norm
than the upper ones due to the skip-connections in vision
transformers. The skip-connections allow the lower layers
to learn more quickly than the upper ones, which may be
one reason for its significant effectiveness in various archi-
tectures [9, 19, 21]. Our local reconstruction can strengthen
this characteristic and thus obtain better performance. Fea-
ture fusion essentially has the similar effect with the skip-
connections. Besides, another advantage of our local con-
struction is that it is compatible with multi-scale supervi-
sions and thus can take advantage of richer information.

A.3. Query-adaptive attention

In the main text, we use Normalized Mutual Informa-
tion (NMI) [17] between query and key patches to examine
how much the attention map depends on the query patch.
Here we use another metric, the Kullback-Leibler diver-
gence between the attention distributions of different query
patches. Intuitively, when the attention map strongly de-
pends on the query patch, the attention distributions of a
pair of query patches should have large KL divergence. We
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(a) ViT-B
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Figure 1. Gradient norm of each layer in the encoder. We compare the global reconstruction, the global reconstruction with feature fusion
and our local reconstruction, which are denoted as ‘Global’, ‘Fusion’ and ‘Local’ respectively.
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Figure 2. The KL divergence between attention distributions of
different query patches at each layer of a pre-trained ViT-B back-
bone, averaged on all pairs of query patches.

calculate the average on all pairs of query patches at each
layer and the results are shown in Fig. 2. As we expect,
existing MIM models with global loss have small KL diver-
gence at lower layers, which means the patches there have
less query-adaptive attention. Relatively, the lower layers in
our LocalMIM have larger KL divergence and the attention
maps depend more strongly on the query patches.

B. GPU Hours
‘GPU Hours’ denotes the running time on single Tesla

V100-32G GPU. For fair comparison, we estimate that of
each model at the same machine with one Tesla V100-32G
GPU, CUDA 10.2 and PyTorch 1.8. We pre-train each
model for 10 epochs using its official released codes and de-
fault hyper-parameters, and then calculate the average run-
ning time per epoch. We find that each epoch takes simi-
lar time with each other during estimation, so pre-training
10 epochs is enough to estimate the GPU Hours per epoch.
The batch size is an important factor that affects the run-

config ViT Swin
optimizer AdamW [16]
base learning rate 2e−4 1e−4

weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.95
batch size 2048 (B) / 4096 (L)
learning rate schedule cosine decay [15]
augmentation RandomResizedCrop
input resolution 224× 224

Table 3. Pre-training setting on ImageNet-1K.

ning time, and we choose it from {32, 48, 64, 128, 256} to
take full advantage of GPU memory and computing capa-
bility. This estimation method avoids the interference of the
communication time among multiple GPUs.

C. Implementation details

For ViT [4], we use the standard architecture with the
sine-cosine positional embeddings and do not use relative
positional encoding or layer scaling. For HOG feature, we
set the number of orientation bins #bins = 18 and the cell
size is the same as the divided regions. We set the same
weight to each local loss for simplicity. The pre-training
and fine-tuning schedules mostly follow [7, 11].

Pre-training. The default setting is shown in Table 3. We
use the simple data augmentation and do not use drop path
or gradient clip. We use the linear learning rate scaling rule
[6]: lr = base lr×batch size/256. The warmup epoch [6]
is set to 10 for pre-training 100 epochs, 40 for pre-training
400, 800 and 1600 epochs.

Fine-tuning on ImageNet-1K. The default fine-tuning set-
ting is shown in Table 4. Most of the hyper-parameters are
shared, except the peak learning rate, layer-wise learning
rate decay and drop path rate, which are influenced by the
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config ViT Swin
ViT-B ViT-L Swin-B Swin-L

optimizer AdamW
peak learning rate {2e−3, 3e−3, 4e−3} {3e−3, 4e−3, 5e−3}
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999
layer-wise lr decay [2] {0.65, 0.75} {0.80, 0.90}
batch size 1024 (B) / 4096 (L)
learning rate schedule cosine decay
fine-tuning epochs 100 50 100 100
warmup epochs 20 5 20 20
drop path [10] 0.1 0.2 0.1 0.3
augmentation RandAug (9, 0.5) [3]
label smoothing [18] 0.1
mixup [23] 0.8
cutmix [22] 1.0
input resolution 224× 224

Table 4. Fine-tuning setting on ImageNet-1K.

backbones and the number of pre-training epochs.

Semantic segmentation on ADE20K. We use UperNet
[20] with ViT-B backbone and follow the semantic segmen-
tation code of [1, 7]. Concretely, we fine-tune end-to-end
for 160K iterations using AdamW optimizer with the peak
learning rate of 4e−4, weight decay of 0.05 and batch size
of 16. The learning rate warmups with 1500 iterations and
then decays with linear strategy. The model is trained with
input resolution of 512 × 512 and uses bilinear positional
embedding interpolate. We choose the out indices of fea-
ture maps as [2, 4, 10, 12] and use FPN [12] to rescale them.

Object detection and segmentation on COCO. We fine-
tune Mask R-CNN [8] on COCO [13] with Swin-B back-
bone. Following [11], we also use the code base and sched-
ule from [14]. Concretely, the model is fine-tuned on COCO
2017 train split and evaluated on 2017 val split. We adopt
the 3× fine-tuning schedule which trains the model for 36
epochs in total and decays the learning rate at the 27-th and
33-th epoch by a factor of 10. We use AdamW optimizer
with the learning rate of 1e−4 and weight decay of 0.05.
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