
A. Additional Results
A.1. Reults of AVA Action Detection

As shown in Table 10, when transferred to the more complicated action detection task (AVA v2.2), MVD still shows
remarkable improvement compared with previous methods. For example, without additional labels of K400, MVD with ViT-
L outperforms VideoMAE by 3.4 to achieve 37.7 mAP. When we intermediately finetune the pretrained models on K400,
MVD with ViT-L also achieves significant performance improvement (i.e., 1.7 mAP) compared with VideoMAE. Finally,
with a ViT-Huge model, MVD achieves 41.1 mAP, improving 1.6 over the prior state-of-the-art method.

method extra data extra labels mAP GFLOPs Param

supervised
SlowFast R101 [7] K400 ✓ 23.8 138 53
MViTv2-B [11] K400 ✓ 29.0 225 51
MViTv2-L [11] IN21K+K700 ✓ 34.4 2828 213
self-supervised
MaskFeat MViT-L [19] K400 ✓ 37.5 2828 218
VideoMAE ViT-B [16] K400 ✗ 26.7 180 87
VideoMAE ViT-B [16] K400 ✓ 31.8 180 87
VideoMAE ViT-L [16] K400 ✗ 34.3 597 305
VideoMAE ViT-L [16] K400 ✓ 37.0 597 305
VideoMAE ViT-H [16] K400 ✗ 36.5 1192 633
VideoMAE ViT-H [16] K400 ✓ 39.5 1192 633
ST-MAE ViT-L [6] K400 ✓ 35.7 598 304
ST-MAE ViT-H [6] K400 ✓ 36.2 1193 632
MVD-B (Teacher-B) IN-1K+K400 ✗ 29.3 180 87
MVD-B (Teacher-B) IN-1K+K400 ✓ 33.6 180 87
MVD-B (Teacher-L) IN-1K+K400 ✗ 31.1 180 87
MVD-B (Teacher-L) IN-1K+K400 ✓ 34.2 180 87
MVD-L (Teacher-L) IN-1K+K400 ✗ 37.7 597 305
MVD-L (Teacher-L) IN-1K+K400 ✓ 38.7 597 305
MVD-H (Teacher-H) IN-1K+K400 ✗ 40.1 1192 633
MVD-H (Teacher-H) IN-1K+K400 ✓ 41.1 1192 633

Table 10. Comparison with previous works on AVA v2.2. “Extra labels” denotes whether the pretrained models are intermediately
finetuned on the pretraining video dataset using labels before transferred to AVA.

A.2. Ablation Study

Comparison with feature distillation. In our paper, we use a baseline method named per-token distillation based on pre-
vious feature distillation methods. In Table 11, per-token distillation with different inputs is compared with masked feature
reconstruction. The results demonstrate that our MVD outperforms per-token distillation with full input or masked input on
both K400 and SSv2.

method masked input top-1 accuracy
K400 SSv2

per-token distillation ✗ 80.4 69.9
per-token distillation ✓ 80.9 70.5
masked reconstruction ✓ 82.1 71.8

Table 11. Comparison with feature distillation without masked reconstruction. “Masked input” denotes that tube masking with a
masking ratio of 90% is applied on the input and only the visible tokens are fed to the student model. We distill ViT-B models from the
video teacher for 400 epochs here.

Pretraining time comparison. In our paper, we find that MVD with a single video teacher achieves better accuracy with
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Figure 4. Pretraining time comparison between MVD and VideoMAE.

less training time, compared to VideoMAE trained for 1600 epochs. In Figure 4, we also compare the training time between
VideoMAE and MVD where we train two teachers for 800 epochs. With distilling for 200 epochs, MVD outperforms
VideoMAE trained for 1600 epochs by 0.7% with 38h less training time. For more epochs, MVD also achieves a better
accuracy-time curve.

Ablation on the initialization of the students. We study whether to initialize the student model with weights from the
teachers. As shown in Table 12, we observe that initializing the student with weights from the teachers does not bring
significant improvements (even worse on SSv2). Therefore, we train the student model from scratch in MVD.

Student Init. top-1 accuracy
K400 SSv2

from scratch 82.7 72.1
image teacher 82.9 71.9
video teacher 82.4 71.7

Table 12. Ablations on the initialization of the student models.

Ablation on the temporal size of 3D patches in the video teacher. Following previous works [1, 16, 18], we utilize the
temporal patch size of 2 for both video teachers and students. In Table 13, we try to increase the temporal patch size of the
video teacher and find that a temporal patch size 2 performs better.

patch size top-1 accuracy
K400 SSv2

2×16 ×16 82.5 71.4
4×16 ×16 81.9 70.7

Table 13. Ablation on the temporal size of 3D patches in the video teacher.

A.3. Masked Feature Modeling for Image Models

We perform masked reconstruction of high-level features for the image ViT on ImageNet-1K. For masked feature modeling
on the image data, only the image teacher in MVD can be used. As the results shown in Table 14, compared with the MAE
baseline, masked feature distillation achieves 0.4% Top-1 accuracy gain on ImageNet-1K. When comparing the performance
improvement against masked reconstruction of pixels between image models and video models, we observe that MVD
achieves greater performance gains on video downstream tasks.

B. Implementation Details
B.1. Pretraining Experiments

We pretrain image teacher models on ImageNet-1K following the strategy in [8], and pretrain video teacher models on
Kinetics-400 following the strategy in [16]. For the distillation stage in MVD, we distill student models with teacher models
for 400 epochs on Kinetics-400 unless otherwise stated. The length of input videos is 16 frames during pretraining. We adopt



target epoch top-1 accuracy
IN-1K K400 SSv2

pixels 1600 83.6 81.5 69.7
features 400 84.0 ↑0.4 82.7 ↑1.2 72.5 ↑2.8

Table 14. Comparison with masked feature modeling for image models. We distill ViT-B for 400 epochs here.

config Kinetics-400
optimizer AdamW [13]
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1,β2=0.9,0.95 [4]
batch size 1024 (S,B), 512 (L,H)
learning rate schedule cosine decay [12]
warmup epochs 40
augmentation MultiScaleCrop [17]
drop path 0.1 (S,B), 0.2(L,H)

Table 15. Pretraining setting of MVD.

config Sth-Sth V2 Kinetics-400 UCF101 HMDB51
optimizer AdamW
base learning rate 1e-3(S), 5e-4(B,L) 1e-3 5e-4 1e-3
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
batch size 512 512 128 128
learning rate schedule cosine decay
warmup epochs 5
training epochs 40 (S), 30 (B,L) 150 (S), 75 (B), 50 (L) 100 50
repeated augmentation 2
flip augmentation no yes yes yes
RandAug [5] (9, 0.5)
label smoothing [14] 0.1
mixup [21] 0.8
cutmix [20] 1.0
drop path [10] 0.1 (S,B), 0.3 (L,H) 0.2 0.2
dropout [9] 0.5 (L,H) 0.5 (L,H) 0.5 0.5
layer-wise lr decay [2] 0.7 (S),0.75 (B,L,H) 0.75 0.7 0.7

Table 16. Fine-tuning setting of MVD.

tube masking in [16] and the masking ratio in the distillation stage is 90%. We conduct experiments of pretraining on 32
NVIDIA V100 GPUs. The default setting of pretraining is presented in Table 15.

B.2. Finetuning Experiments

We transfer models pretrained by MVD on Kinetics-400 to video downstream tasks with the default setting in Table 16.

Kinetics experiments. When finetuning on Kinetics-400, we adopt the dense sampling following [3,7] and the default length
of input videos is 16 frames. For inference, we use 3 spatial crops × 5 temporal clips.

Something-Something v2 experiments. During finetuning on Something-Something v2, we adopt the uniform sampling
following [17] and the default length of input videos is 16 frames. For inference, we use 3 spatial crops × 2 temporal clips.

UCF101 and HMDB51 experiments. For finetuning on UCF101 and HMDB51, we adopt the dense sampling and the
default length of input videos is 16 frames. For inference, we use 3 spatial crops × 5 temporal clips. On UCF101 and
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(b) video teacher.

Figure 5. Feature similarity across different frames for different teacher models. Similarity matrices are computed on the Kinetics-400
validation set. The numbers in the grid are the values of cosine similarity between two frame features.
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(b) student distill from the video teacher.

Figure 6. Feature similarity across different frames for student models distilled from different teacher models. Similarity matrices
are computed on the Kinetics-400 validation set.

HMDB51, we follow the commonly used protocols and evaluate our method across all 3 train/val splits.

AVA experiments. When finetuning on AVA v2.2, following [16], we adopt the detection architecture in [7] and the detected
person boxes from AIA [15]. The default length of input videos is 16 frames. We also use the default finetuning setting
in [16] for a fair comparison.

C. Visualization
C.1. Analysis of temporal dynamics

In our paper, to quantify the temporal dynamics that models capture from the input video, we study the similarity between
feature maps across different frames of each input video clip via the cosine similarity.
Analysis of features encoded by different teachers. The properties of target features generated by different teachers may
influence the performance of students on different downstream tasks. As similarity matrices shown in Figure 5, for image
teachers, the feature maps of different frames are almost the same. However, for video teachers, the features of different
frames have larger differences. This indicates that video teachers capture more temporal difference. Therefore, students
distilled from video teachers can learn stronger temporal dynamics and perform better on temporally-heavy downstream
tasks.
Analysis of features encoded by students distilled from different teachers. To study what students learn from different
teachers, we visualize the feature similarity across different frames for student models. As results shown in Figure 6, we



observe that (a) for the student distilled from the image teacher, the features of different frames have larger differences
compared with those encoded by the image teacher. This indicates that students can also learn some temporal dynamics from
the masked reconstruction of spatial features on videos. (b) For the student distilled from the video teacher, the features of
different frames have larger differences compared with those encoded by the student distilled from the image teacher. This
demonstrates that students learn stronger temporal dynamics from video teachers.
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