Supplementary Material for

“ MetaMix: Towards Corruption-Robust Continual Learning
with Temporally Self-Adaptive Data Transformation ”’

A. Appendix Organization

The appendix is organized as following: We first describe the baseline details. we then describe the 15 common corruption
operations applied during testing. We then provide additional implementation details. We next provide additional experimental
results on CIFAR10, standard deviation, robustness accuracy of class-CL and effect of memory size. We then provide additional
ablation study.

B. Notation Table

We provide notation table in Table 4:

C. Baseline Description
C.1. CL backbone baselines

The backbone CL baselines are described as follows:

* DER ++ [5] is a memory-based approach and is one of SOTA CL baselines. Our method is orthogonal to memory-based
CL methods and can be seamlessly and straightforwardly integrated with them.

* CLS-ER [2] is an memory-replay based SOTA CL method which maintains short-term and long-term semantic memories
that interact with the episodic memory to mitigate forgetting.

C.2. Data Augmentation Baselines

The data augmentation baselines are described as follows:

* Adversarial Training (AT) [33], which trains the model by optimizing the model performance on the worst-case
perturbed input.

¢ RandAugment (RA) [11] significantly reduces data augmentation search space and can be directly trained on the target
task without resorting to a separate proxy task.

* Maxup [ 6] performs data augmentation by optimizing the mixing weights of Mixup [57] in the worst-case.
* DeepAugment [20] which augment new images by perturbing the representations/features of deep networks.

* Augmix [22] composes and combines different augmentation operations with different depths and widths to generate
complex corruptions and has demonstrated the effectiveness for achieving robustness against various corruptions during
testing with state-of-art performance.

D. Common Corruption Description

We provide detailed descriptions of common corruptions in Table 5.

E. Additional Implementation Details

Computing Resources : We use Nvidia-A6000 to do the experiment.

We set the inner-loop step J to 3, and the learning rate « to 0.05. For this set of experiments, we train on each CL task for
50 epochs. Following Augmix [22], we use 3 examples per Jensen-Shannon Divergence (1 clean image and 2 augmented
images), a chain depth stochastically varying from 1 to 3, and 3 augmentation chains. We randomly select augmentation



Table 4. Notation Table

Notation Meaning
A Augmentation width
C a collection of corruption operations
c a corruption operation ¢ € C
d augmentation depth
Dte the testing data of '™ task
e, and e; the last layer features outputted by ResNet18 for memory data and current received data
fo the CL model with parameters
gt is the cell state for each datapoint in the batch of LSTM at time ¢
h is the hidden state for each datapoint in the batch of LSTM at time ¢
I is the context information encoding as input to LSTM at time ¢;
J Meta Mixer update steps
Lo, (z,y) the loss function for labeled data (x, y)
Day, = fo,(xp) is the network output probabilities of each class for original raw data x;
me mixing weight at time ¢ for mixing original data and augmented data
N the number of CL tasks
o corruption operation during training
o is the output of LSTM at time ¢ for the mixing parameters
St pseudo-seen augmentation operations at time ¢
Uy pseudo-unseen augmentation operations at time ¢
Tk task &k
w = (w1, w2, ..., WA) the mixing weight for the chains, wy, is the mixing weight for the k" chain.
Tp1 and Tpe are the two mini-batch memory data

augmented by applying the pseudo-unseen augmentation operations U; on (xp, yp);

x}, and xpy are the two mini-batch memory data
augmented by applying the pseudo-seen augmentation operations S; on (s, ys)

Y data label

JS Jensen-Shannon divergence

LSTM MetaMix with parameters

Beta and Dirichlet distribution parameter

Metamixer learning rate

CL model learning rate

2wl |

regularization weight

operations from the pseudo-seen and pseudo-unseen operations split with specific severity level and chain length at each
training step.

Corruption operations splitting strategy. The operations list is the augmentation operations performed during training
denoted as O = [autocontrast, equalize, posterize, rotate, solarize, shear-x, shear-y, translate-x, translate-y]. At each training
step, we first randomly shuffle the operation list and split the operations into seen and unseen operations based on a uniform
random number ¢ between [5, 7]. This is to ensure that every operation subsets are non-empty. The operations O;..., will



Table 5. Common corruption summarization

Corruption Type

Description

Gaussian noise

This corruption can appear in low-lighting conditions

Shot noise

is electronic noise caused by the discrete nature of light itself

Impulse noise

is a color analogue of salt-and-pepper noise and can be
caused by bit errors

Defocus blur

occurs when an image is out of focus.

Frosted Glass Blur appears with “frosted glass” windows or panels.
Motion blur appears when a camera is moving quickly.
Zoom blur occurs when a camera moves toward an object rapidly.
Snow is a visually obstructive form of precipitation.
Frost forms when lenses or windows are coated with ice crystals.
Fog shrouds objects and is rendered with the diamond-square algorithm.
Brightness varies with daylight intensity.
Contrast can be high or low depending on lighting conditions

and the photographed object’s color.
Elastic transformations stretch or contract small image regions.
Pixelation occurs when upsampling a lowresolution image.
JPEG is a lossy image compression format

which introduces compression artifacts.

serve as the pseudo-seen operations, and Qg 1...9 Will serve as the pseudo-unseen operations.

F. Additional Experimental Results

F.1. Results on CIFAR10

Table 6 and 7 show the additional

results on CIFAR10.

Table 6. Robust accuracy of Task-CL on Split-CIFAR10-C

Method Noise Blur Weather Digital
Gauss Shot  Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg

DER 5097 50.76 51.08 50.47 50.12  50.57 50.53 50.25 50.18 50.12 5029 50.16 50.35 5042 5045 5045
AT 5112 5127 50.97 51.65 5145 51.63 5151 51.33 51.68 51.01 514 50.82 51.58 5151 5149 5136
RA 5445 5436 5432 54.48 56.17 54.06 53.84 5297 53.03 5485 5452 53.89 54.64 5476 555 5439
DeepAugment 4947 4947 49.58 49.32 49.49 4946 49.27 4950 49.66 49.45 49.68 49.81 49.40 4940 4935 4949
Maxup 4756 4749 47.88 47.59 4748 47.58 47.68 4778 4799 4893 47.81 48.05 4752 4745 4741 4775
Augmix 87.96 89.52 87.92 92.3 82.17 90.95 9143 89.74 89.75 90.69 9251 89.61 90.38  91.54 90.97 89.83
Ours 8847 90.22 87.73 94.12 81.75 92.36 93.56 91.04 90.64 92.14 9440 90.78 91.92 9326 92.82 91.01




Table 7. Robust accuracy of Class-CL on Split-CIFAR10-C

Method Noise Blur Weather Digital
Gauss Shot  Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg

DER 15.03  14.59 15.09 11.86 14.18 12.0 11.36 13.01 11.22 1081 13.66 11.36 12.14 13.6 1348 12.89
AT 1038 10.26 10.75 10.17 1021 10.12 1025 100 996 998  9.99 9.96 10.14 10.18 10.19 10.17
RA 1259 1255 12.02 10.65 1227 108 1051  10.34 1041 11.17 1042 1148 10.66  10.79 11.02 11.18
DeepAugment 10.08  10.10 10.06 10.10 10.12 10.08 10.16 998  9.98 10.02  10.02  9.99 10.09 10.08 10.11 10.07
Maxup 10.04 10.04 10.04 10.04 10.04 10.04 10.03 10.04 10.04 10.04 10.04 10.04 10.04  10.04 10.04 10.04
Augmix 58.01 61.64 5833 69.17 48.06 66.28 67.69 6231 63.85 66.07 70.83 64.54 63.96  66.02 64.61 6342
Ours 59.60 63.78 58.76 69.14 51.31 66.85 67.78 62.85 63.63 6577 7053 61.89 65.63 66.86 65.12 63.97

F.2. Standard Deviation of Robustness Accuracy
The standard deviation on CIFAR100 with task- and class-CL are shown in Table 8 and 9.

Table 8. Standard Deviation of Robust accuracy of Task-CL on Split-CIFAR100-C with DER++

Method Noise Blur Weather Digital

Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg
DER++ 0.27 031 0.33 0.26 020 0.38 0.20 022 022 029 0.28 0.31 0.39 034 024 033
AT 0.42 030 0.32 0.27 027 0.38 0.37 042 032 031 037 0.49 0.37 038 029 042
RA 0.97 0.80 0.67 0.87 094  0.54 0.52 092 0.68 081 0.87 0.84 0.81 098 0.66 054
DeepAugment 0.20 036 0.33 0.17 0.19  0.39 0.39 040 0.14 022 0.19 0.14 0.35 0.18 018 0.17
Maxup 0.15 020 0.12 0.26 0.19 0.26 0.38 0.16 025 0.10 0.16 0.25 0.23 027 024 035
Augmix 0.77 0.40 0.78 0.74 071  0.54 0.73 059 048 0.70 0.40 0.46 0.48 051 064 0.67
Ours 0.79 0.82 092 0.42 1.01  0.38 0.22 051 012 0.58 040 0.35 0.08 049 021 053

Table 9. Standard Deviation of Robust accuracy of Class-CL on Split-CIFAR100-C with DER++

Method Noise Blur Weather Digital

Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg
DER++ 0.08 0.19 0.20 0.20 0.08 0.14 0.10 020 0.18 0.07 0.08 0.15 0.18 0.19 009 0.07
AT 0.12 0.15 0.07 0.10 0.12  0.11 0.19 0.11 0.06 0.18 0.16 0.12 0.18 0.17 016 0.14
RA 0.57 0.58 0.44 0.58 059  0.31 0.39 066 056 0.53 0.50 0.50 0.67 048 035 0.67
DeepAugment 0.23 0.07 0.17 0.18 024 0.12 0.13 0.10 024 0.19 0.06 0.19 0.05 0.11 019 0.09
Maxup 0.22 021 0.17 0.07 0.07 0.11 0.20 0.12  0.07 0.10 0.18 0.09 0.21 0.14 007 020
Augmix 1.19 1.11  0.81 0.73 1.12 0.85 1.09 .15 071 0.73 0.89 1.16 0.83 1.03 076  0.89
Ours 1.16 1.27 0.78 0.83 092 095 0.79 094 112 111 093 1.17 0.81 1.06 0.88 0.96

F.3. Robust accuracy of Class-CL

Table 3 (main text) and 10 show the results of class-CL on Split-CIFAR100-C and Split-MinilmageNet-C.

Table 10. Robust accuracy of Class-CL on Split-MinilmageNet-C

Method Noise Blur Weather Digital

Gauss Shot  Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg
DER++ 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
AT 1.01 1.11 0.97 1.21 1.19 1.2 1.18 1.32 1.16 1.03 1.15 0.77 1.2 1.01 1.19 1.11
RA 2.25 263 213 3.34 232 296 3.24 321 207 268 278 2.34 3.71 352 441 291
DeepAugment 0.86 0.81 0.93 0.94 094 092 0.95 1.00  1.02 1.01 1.02 1.04 0.87 075 080 092
Maxup 1.84 1.14 1.91 1.32 1.96 1.26 1.38 1.9 1.25 1.5 1.2 0.78 1.34 1.33 1.31 1.43
Augmix 14.88 16.62 13.36 18.73 16.35 19.63 17.64 1584 17.52 1671 1994 10.99 19.86 1447 20.39 16.86
Ours 1491 17.02 14.15 21.73 18.69 23.67 20.74 1696 17.85 19.81 2250 12.92 2435 15.68 24.40 19.02

F.4. Effect of Memory Size

We evaluate the effect of memory size with 500 and 3000, respectively. The memory size of 500 is the default setting in the
above tables. We provide experiment results on CIFAR100, Mini-ImageNet with memory size 3000 on task-CL and class-CL
respectively in Table 11, 12, 13, 14.



Table 11. Task-CL with memory size 3000 on robust accuracy for various corruptions and compared methods on Split-MinilmageNet-C.

Method Noise Blur ‘Weather Digital

Gauss  Shot  Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg
DER++ 1047 1044 1031 10.17 10.34 1026 1030 10.49 1045 10.24 10.28 10.10 1040 1037 10.39 10.34
AT 10.03  10.19 10.04 10.29 10.28 10.29 1025 1037 1020 10.16 10.05 9.70 1030 1038 1026 10.19
RA 20.61 2139 20.88 18.59 18.61 18.76 17.98 19.82 20.53 1692 1893 14.02 21.88 2231 2647 19.85
DeepAugment 942 943 941 9.52 9.52  9.50 944 939 952 9.68 9.27 9.29 9.49 9.52 939 945
Maxup 9.63 9.76  9.58 9.89 991  9.78 9.92 10.08 10.09 9.80 9.79 9.53 9.87 10.18 9.70  9.83
Augmix 53.60 59.28 48.45 68.27 62.44  72.15 6531 6410 63.15 64.11 7094 48.11 7337 5843 7479 63.10
Ours 5371 6042 46.10 71.65 64.56 7412 6840 63.63 6523 68.10 7223 51.12 75.06  60.44 76.15 64.73

Table 12. Class-CL with memory size 3000 on robust accuracy for various corruptions and compared methods on Split-MinilmageNet-C.

Method Noise Blur ‘Weather Digital

Gauss Shot  Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg
DER++ 1.21 130 1.09 1.0 1.11 1.12 1.03 122 123  1.02 1.09 1.07 1.18 089 123 1.12
AT 1.05 1.09  1.03 1.18 120  1.16 1.15 1.02 101 .02 1.02 1.01 1.15 120  1.14  1.09
RA 3.22 343 320 2.67 246  2.65 250 266 278 214 280 1.53 3.22 374 434 2389
DeepAugment 1.08 1.09  1.07 1.15 1.17 116 1.13 1.06 1.04 1.05 1.04 1.04 1.11 .15 112 110
Maxup 0.82 081 0.84 0.92 093  0.89 0.92 1.0o1 099 101 1.07 1.03 0.91 079 092 092
Augmix 23.89 27.86 20.59 32.07 28.18 3571 29.84 2759 27.14 2729 3498 18.66 37.14  28.10 3896 29.20
Ours 2328 2795 19.90 37.28 30.73 39.54 3440 2799 29.89 33.06 3695 21.28 40.51 2843 4186 31.54

Table 13. Task-CL with memory size 3000 on robust accuracy for various corruptions and compared methods on Split-CIFAR100-C.

Method Noise Blur Weather Digital
Gauss Shot  Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg

DER++ 10.85 10.87 10.87 10.45 11.01  10.46 1036 10.72 1048 1034 10.77 1041 10.59 10.93  10.68 10.65
AT 1123 11.27 10.98 11.70 11.28 11.69 11.78 10.86 1093 1120 11.52 11.79 11.59 1150 11.38 11.38
RA 2452 2354 242 22.46 2147 22.08 2132 22.09 2422 19.82 2206 16.16 2546 2556 2859 2290
DeepAugment 12.00 12.08 11.81 12.08 11.92 12.14 12.03 11.72 1145 11.51 11.73 10.73 11.96 12.06 12.10 11.82
Maxup 1098 10.99 10.75 11.21 11.19  11.25 11.11  11.09 11.17 11.04 1090 10.78 1124 11.17 11.15 11.07
Augmix 67.34 7150 66.41 79.13 68.70 77.62 7799 7488 73.63 7431 7939 7321 76.25  77.09 7427 74.11
Ours 68.71 72.67 67.75 80.90 68.42  79.06 79.83 7532 7542 7594 81.67 76.12 78.00 78.22 75.28 75.56

Table 14. Class-CL with memory size 3000 on robust accuracy for various corruptions and compared methods on Split-CIFAR100-C.

Method Noise Blur Weather Digital

Gauss  Shot  Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg
DER++ 0.99 099  0.99 0.99 099  0.99 099 099 099 099 099 0.99 0.99 099 099 099
AT 1.20 1.18  1.16 1.10 1.19  1.09 1.07 1.05  1.02 1.03 1.10 1.04 1.12 .14 1.09 111
RA 5.14 565 408 4.52 322 46 374 323 452 356 4.65 29 4.68 478 511 429
DeepAugment 1.42 144 143 1.46 1.49 146 1.45 132 122 120 1.26 1.07 1.44 146 147 137
Maxup 0.97 1.03  1.02 1.04 1.10  1.00 121 089 088 089 0.87 0.88 1.05 1.01 1.01 099
Augmix 27.84 3132 2735 39.37 2835 37.14 3829 3419 33.65 35.10 3992 33.00 3538 38.06 33.50 34.16
Ours 30.06 33.54 29.57 41.59 30.57 39.36 4051 36.41 3587 37.32 4214 3522 37.60 4028 3572 36.38

F.5.BWT

In the corruption-robust scenario, backward transfer (BWT) is no longer a meaningful metric here with such extreme
differences of accuracy, as the significantly lower accuracy of comparison methods results in much less space for further
performance variations during backward transfer. The results are shown in Table 15.



Table 15. Various methods with Backward Transfer (BWT).

. Split-CIFAR10-C Split-CIFAR100-C Split-minilmageNet-C
Corruption
Task-CL  Class-CL Task-CL  Class-CL Task-CL  Class-CL

DER -1.55 -46.36 -0.74 -0.69 -0.18 -1.68

AT 1.86 -28.43 -0.54 -3.83 -1.08 -4.54
RA 1.50 -44.80 2.95 -11.03 -3.52 -12.58
DeepAugment -0.61 -25.40 -22.80 -72.79 -18.02 -59.14
Maxup -2.84 -49.63 -0.29 0.12 -0.07 -1.12
Augmix -5.72 -29.94 -19.70 -61.09 -16.78 -50.85
Ours -5.03 -28.64 -19.67 -59.96 -15.93 -49.58

G. Integration with other CL methods

In this Section, we integrate our methods with another SOTA CL methods, i.e., memory-based method, CLS-ER (only
applicable in Class-CL) [2] in Table 16 and 17.

G.1. CLS-ER

Table 16. Robust accuracy of Class-CL on Split-CIFAR100-C with CLS-ER

Method Noise Blur Weather Digital

Gauss Shot  Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg
CLS-ER 0.82 0.84  0.96 0.85 0.9 0.8 0.7 0.92 1.04 097 0.76 0.97 0.8 0.86 0.8 0.87
AT 1.19 1.16 1.09 1.04 1.12 0.98 1.0 0.84 1.13 1.08  0.92 1.15 1.11 1.08 1.0 1.06
RA 6.63 6.67 646 7.05 5.1 4.95 6.29 575 6.67 807 722 7.65 6.03 7.6 788  6.67
DeepAugment 2.66 244 254 2.55 1.81 1.98 1.81 204 217 1.89 1.74 24 224 264 217 220
Maxup 1.53 1.63 1.74 1.58 1.38 1.48 1.63 1.61 1.6 1.51 1.71 1.32 1.46 1.41 1.58 1.55
Augmix 19.81 2135 20.46 26.45 19.23 2528 25.68 2229 2273 2305 2657 22.83 23.81 2491 2329 23.18
Ours 22.69 24.63 23.38 29.51 2239 2833 2845 25.65 2534 2627 29.88 26.06 27.15 2834 262 2628

Table 17. Robust accuracy of Class-CL on Split-MinilmageNet-C with CLS-ER

Method Noise Blur ‘Weather Digital

Gauss Shot  Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg
CLS-ER 1.03 1.09 1.04 1.09 1.03 1.05 1.02 1.02 1.03 1.07 1.02 1.1 1.05 1.05 1.05 1.05
AT 1.07 123 099 1.28 1.3 1.22 1.21 1.34 1.32 1.14 1.17 0.81 1.32 1.09 1.31 1.19
RA 2.71 335 272 3.74 279 35 3.54 379 275 34 3.66 2.74 4.52 393 514 349
DeepAugment 2.07 1.75 1.93 1.73 1.49 1.42 1.45 2.37 188 214 248 2.53 2.02 1.27 1.53 1.87
Maxup 2.08 1.59  2.19 1.69 2.54 1.73 1.91 2.12 1.67 1.76 1.54 1.1 1.66 1.7 1.76 1.80
Augmix 15.14  16.77 13.66 18.98 16.5 19.78 1779 16.12 1772 16.86 20.01 11.06 19.95 14.65 20.61 17.04
Ours 15.1 17.23 1446 21.95 19.01 238 21.12  17.18 18.12 20.1 22.84 13.24 2457 1597 24.63 19.29

H. Clean ACC and Unknown vs. Known Corruptions

The clean ACC on CIFARIO is shown in the following table. All the baseline methods has some trade-off the clean

accuracy since the data augmentation changes the memory data distribution. But our method is substantially more robust to
data corruptions than baselines.

DER++ AT RA  DeepAugment Maxup AugMix MetaMix
93.56 86.73  90.83 83.28 91.07 89.39 89.51

Performance gap between known and unknown corruption. The results of known vs. unknown corruptions on CIFAR10 are
shown in the following table. The gap in class-CL is larger than task-CL

task-CL  class-CL

known corruptions 93.49 69.78
unknown corruptions 91.01 63.97




I. Ablation study

Robustness Varies Along the CL Process (time) and Across Different Severity Levels. Figure 3 in Appendix shows
the robustness varies along the CL process and across different severity levels. We observe that our method still outperforms
AugMix with different number of training tasks during CL. Also, the results show that the higher the corruption severity, the
lower the robustness accuracy. This aligns with our intuition that with more corruptions, it will be more difficult for the CL
learner to make correct predictions.

Robustness with different number of task  Robustness with different severity level

—4— AugMix 700 —— AugMix

--¥-- MetaMix Twe --¥-- MetaMix
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(a) Robustness varies along (b) Robustnesss varies across different
the CL process severity levels

Figure 3. (a) The robustness varies with different number of tasks, the robustness accuracy is evaluated at the end of training each task. (b)
Robustness varies with different severity levels.

In this section, we perform various ablation studies to show the sensitivity of hyperparameters and the effectiveness of each
proposed component.

Effect of meta-learning objectives. In the main text, we formulate the problem as a bi-level optimization in Eq. (6).
Here, we explore another alternative objective with simultaneous optimization on all the training augmentation operations
without splitting the operation set O into seen and unseen ones without the meta-learning objective. The optimization goal is
shown in Eq. (9). The result is shown in Table 18. We can observe that our meta-learning-based method can improve over
this joint training baseline by more than 1.5% in most cases for both task-CL and class-CL on both Split-CIFAR100C and
mini-ImageNetC, showing the effectiveness of the meta-learning objective for optimizing the pseudo unseen augmentation
operation performance.

O*a ¢* = arg min E L(mlnyba 07 ¢) + AJS(xb75b175b2)7
®,60 opcO

€))

where @, and @y, are the augmented images by using the operations in O.

Table 18. Ablation study of Task-CL and Class-CL with/without meta-learning.

Method CIFAR100-C  Mini-ImageNet

(Joint training) 65.49 53.57
Task-CL Ours(meta-learning) 66.43 55.32

Method CIFAR100-C  Mini-ImageNet

Ours(Joint training)  24.41 17.53
Class-CL Ours(meta-learning)  26.05 19.02

The effect of LSTM vs MLP. To evaluate the advantage that LSTM can capture the information of previous tasks with
additional hidden state, we compare it to MLP (multi-layer perceptron). We present the results in Table 19. We can observe
that the performance improved slightly with LSTM as MetaMixer.



Table 19. Ablation study of Task-CL and Class-CL with LSTM vs MLP respectively.

MetaMixer Architecture CIFAR100-C  Mini-ImageNet

MLP 66.27 55.09
Task-CL 1 5rm 66.43 55.32

MetaMixer Architecture CIFAR100-C  Mini-ImageNet

MLP 25.83 18.79
Class-CL 1 stm 26.05 19.02

Sensitivity analysis of \. To evaluate the effectiveness of regularization strengths A in Eq. (6). Table 20 shows the
sensitivity analysis of different A values.

Table 20. Sensitivity of A

A 0.0 0.5 1.0 2.0
task-CL-CIFARI0 5045 90.05 91.01 90.32

Effect of MetaMixer adaptation steps J. To evaluate the effectiveness of different number of adaptation steps J for
solving the lower-level optimization in Eq. (6). Table 21 shows the sensitivity analysis of different adaptation steps J. We
can observe that the performance improves slightly with more inner-loop adaptation steps. This shows that the inner-loop
optimization is more accurate with more adaptation steps, thus providing a more informative signal for outer-loop augmentation
strategies optimization. For efficiency, we choose J = 3.

Table 21. Sensitivity analysis of adaptation steps J of Task-CL on Split-CIFAR100-C.

1 65.03
3 66.43
) 66.49

J
J
J

Effect of MetaMixer learning rate 3. To evaluate the effectiveness of MetaMixer learning rate 3 for solving the lower-level
optimization in Eq. (6). Table 22 shows the sensitivity analysis of different MetaMixer learning rate 3.

Table 22. Sensitivity analysis of MetaMixer learning rate 3 of Task-CL on Split-CIFAR100-C.

B =0.01 65.87
B =0.05 66.43
B=0.2 66.32

Effect of combining current mini-batch data received at time ¢ of the current task with the mini-batch data sampled
from memory buffer. In the main text, we denote the mini-batch data (., y,-) randomly sampled from the memory buffer
concatenated with the current received mini-batch data (x;, y;) together as (xy, y5). Table 23 shows the results of using only
the mini-batch data sampled from the memory buffer, i.e., without using the mini-batch data received at time ¢. We can observe
that with memory mini-batch data (.., y,-) alone, the performance of the proposed method drops to 60.6%, indicating the
effectiveness of using additional current mini-batch data.

Table 23. Ablation study of Task-CL on Split-CIFAR100-C without using mini-batch data from current task

Ours (memory data only) 60.6
Ours (combine) 66.43

Effect of mixture width A. To evaluate the effectiveness of mixture width, we perform evaluations across different mixture
widths A. Table 24 shows that with the increased augmentation width A, the performance increases as well. This indicates



that the augmented data becomes more complex and diverse with a wider augmentation path and is helpful for performance
optimization. For computation efficiency, we use A = 3 for simplicity.

Table 24. Sensitivity analysis of augmentation width A of Task-CL on Split-CIFAR100-C

A=1 64.87
A=3 66.43
A=5 66.51

Computation Cost. To evaluate the computation cost of Meta-Mix compared to AugMix, we set the training time of
AugMix as unit 1. We compare the relative computation cost compared to AugMix in Table 25. This shows that our methods
add a slightly more additional computation cost. In future work, we will improve its computation efficiency.

Table 25. Computation cost (wall clock running time for one epoch training) comparisons of Task-CL on Split-CIFAR100-C

Method running time (seconds)

AugMix 91
Meta-Mix (Ours) 179
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