
NeuWigs: A Neural Dynamic Model for Volumetric Hair Capture and Animation
Supplementary Material

1. Appendix

1.1. Network Architecture

Here we provide details about how we design our neural
networks and further information about training.
Encoder. As training a point cloud encoder solely is ex-
tremely unstable, we first train an image encoder and use
it as a teacher model to train the point cloud encoder. In
practice, we train two encoders for our hair branch together.
Here we first illustrate the structure of both encoders. We
will go back to how we train them and use them later. One
of the encoders is an image encoder which is a convolu-
tional neural network (CNN) that takes multiple view im-
ages as input. We denote the image encoder as Eimg The
other one is E which is a PointNet encoder that takes ei-
ther an unordered hair point cloud pt or a tracked hair point
cloud qt as input. Positional encoding [4] is applied to the
raw point cloud coordinate before it is used as the input to
the network. We find this is very effective to help the net-
work in capturing high frequency details. In practice, we
use frequencies of x2 where x ranges from 1 to 7. We show
the detailed architecture of Eimg in Tab 1. The architecture
of the point cloud encoder E is shown in Tab 2. Both of
the two encoders E and Eimg can produce a latent vector in
size of 256, which are supposed to describe the same con-
tent. Their output will be passed to Eµ and Eσ which are
two linear layers that produce µ and σ of zt respectively.
Point Decoder. We use a 3-layer MLP as the point decoder
D, which takes a 1d latent code zt as input and outputs the
coordinate of the corresponding tracked point cloud qt. We
show the architecture of D in Tab 3.
Volume Decoder. The volumetric model is a stack of 2D
deconv layers. We align the x-axis and y-axis of each vol-
ume and put them onto a 2D imaginary UV-space. Then we
convolve on them to regress the z-axis content for each of
the x,y position. We show the architecture of the volume de-
coder in Tab 4. In our setting, we have two seperate volume
decoder for both RGB volume and alpha volume.
Dynamic Model. We use three different inputs to the dy-
namic model T2M, namely the hair encoding zt−1 at the pre-
vious frame t − 1, the head velocity ht−1 and ht−2 from
the previous two frames t− 1 and t− 2, and the head rela-

Encoder Eimg

1 Conv2d(3, 64)
2 Conv2d(64, 64)
3 Conv2d(64, 128)
4 Conv2d(128, 128)
5 Conv2d(128, 256)
6 Conv2d(256, 256)
7 Conv2d(256, 256)
8 Flatten()
9 Linear(256×ninpimg×15, 256)

Table 1. Encoder Eimg architecture. Each Conv2d layer in the
encoder has a kernel size of 3, stride of 1 and padding of 1. Weight
normalization [9] and untied bias are applied. After each layer,
except for the last two parallel fully-connected layers, a Leaky
ReLU [3] activation with a negative slope of 0.2 is applied. Then a
downsample layer with a stride of 2 is applied after every conv2d
layer. The first linear layer takes the concatenation of all towers
from different image views as input. ninpimg stands for much
many views we take.

tive gravity direction gt at the current frame t. We first en-
code {ht−1,ht−2} and gt into two 1d vectors with 128 di-
mensions respectively. Then, we concatenate them together
with encoding zt−1 as the input to another MLP to regress
the next possible hair state encoding zt. As in Tab. 5, we
show the flow of T2M. For the head velocity branch, we first
extract the per-vertex velocity ht−1 = xt − xt−1 where
xt is the coordinate of the tracked head mesh at frame t.
To be noted, here the ht−1 contains only the information
of the rigid head motion but not any other non-rigid motion
like expression change. This representation of head motion
is redundant theoretically, but we find it helps our network
to converge better when compared to just using the pure 6-
DoF head rotation and translation. We then reshape it and
use it as the input to a two layer MLP to extract a 1d encod-
ing of size 128. For the gravity branch, we first encode the
gravity direction gt with cosine encoding [4]. The output of
the dynamic model is the mean µt+1 and standard deviation
σt+1 of the predicted hair state zt+1.

1

Encoder E
1 Conv2d(3, 128)
2 Conv2d(128, 256)
3 Conv2d(256, 256)
4 Conv2d(256, 256)
5 Conv2d(256, 512)
6 Conv2d(512, 512)
7 Conv2d(512, 512)
8 Conv2d(512, 1024)
8 MAM pooling()
9 Linear(1024×3, 512)

10 Linear(512, 256)
11 Linear(256, 256)

Table 2. Encoder E architecture. We use a E structure similar
to PointNet [6]. All Conv2d uses a kernel of 1 and stride of 1,
which serves as a shared MLP. We only use Conv2d for simpler
implementation. After each Conv2d layer, a Leaky ReLU [3]
activation with a negative slope of 0.2 is applied. Then we use
a MAM pool layer to aggregate features from all points. MAM
stands for min, avarage and max pooling, which concatenates the
results of min, average and max pooling into one. Then, two linear
layers are applied to the output of MAM pooling and generate a
256 latent vector.

Decoder D
1 Linear(256, 256)
2 Linear(256, 256)
2 Linear(256, 4096×3)

Table 3. Decoder D architecture. We use an MLP with three
Linear layers as the decoder D. After each layer except the last
layer, a Leaky ReLU [3] activation with a negative slope of 0.2 is
applied.

1.2. Training details

Dataset and Capture Systems. Following the setting in
HVH [10], we also captured several video sequences with
scripted hair motion performed under different hair styles
for animation tests. During the capture, we ask the partic-
ipants to put on different kind of hair wigs and perform a
variety of head motions like nodding, swinging and tilting.
For each action, they performed multiple times and at both
slow and fast speed. To collect a demonstration set for an-
imation, we also ask the participants to put on a hair net
(bare head) and perform the same set of motions as when
they are wearing a hair wig.
Hair Point Flow Estimation. There are three steps for
computing the hair point flow, namely per-point feature de-
scriptor extraction, feature matching and flow filtering. In
the first step, we compute a per-point feature descriptor
based on the distribution of each point’s local neighboring

Volume Decoder
global encoding zt per-point

hair featurerepeat
concat

1 Linear(320, 512)
2 deconv2d(512, 256)
3 conv2d(256, 256)
4 deconv2d(256, 256)
5 conv2d(256, 256)
6 deconv2d(256, 128)
7 conv2d(128, 128)
8 deconv2d(128, 16×ch)

Table 4. Architecture of the Volume Decoder. We first repeat
the global encoding zt into the shape of the per-point hair feature.
The per-point hair feature is a tensor that is shared across all time
frames. We then concatenate those two into one. Each layer except
for the last one is followed by a Leaky ReLU layer with a negative
slope of 0.2. Each deconv2d layer has a filter size of 4, stride
size of 2 and padding size of 1. Each conv2d layer has a filter
size of 3, stride size of 1 and padding size of 1. ch stands for the
channel size of the output. It is set to 3 if it is an rgb decoder and
1 for a alpha decoder.

Temporal Transfer Module (T2M)
1 head velocity {ht−1,ht−2} head relative gravity gt hair state zt−1

2 Linear(7306×3, 256) cosine encoding3 Linear(256, 128)
4 Linear(539, 256)
5 Linear(256, 256)
6 Linear(256, 256)
7 Linear(256, 256) Linear(256, 256)

Table 5. Temporal Transfer Module (T2M). We first encode the
head velocity {ht−1,ht−2} and head relative gravity gt into 1d
vectors, with a 2-layer MLP and cosine encoding respectively.
Then we concatenate hair state zt−1 with those vectors to serve
as the input to another MLP. The last two layers will be regressing
the mean µt+1 and standard deviation σt+1 of the predicted hair
state zt+1. All Linear except for the last two are followed by a
Leaky ReLu activation with a negative slope of 0.2.

points. In the second step, we match the points from two
adjacent time steps based on the similarity between their
feature descriptor. In the last step, we filter out outlier flows
that are abnormal.

To compute the point feature descriptor, we construct
Line Feature Histograms (LFH) inspired by Point Feature
Histograms (PFH) [8]. The LFH is a historgram of a 4-
tuple that describes the spatial relationship between a cer-
tain point pt

1 and its neighboring poit pt
2. As shown in

Fig. 1, we visualize two points pt
1 ∈ R3 and pt

2 ∈ R3

from the same time step t. Given pt
1 and pt

2, we define
the following four properties that describe their spatial rela-
tionship. The first one is the relative position of pt

2 with
respect to pt

1, which is dt
1,2 = pt

2 − pt
1. Then we can

Figure 1

compute the relative distance as ||dt
1,2||2 ∈ R. The second

term is the angle θt1,2 between dir(pt
1) and dir(pt

2), where
dir(x) is the line direction of x from [5]. The last two
terms are the angles αt

1,2 and βt
1,2 between (dir(pt

1),d
t
1,2)

and (dir(pt
2),d

t
1,2) respectively. For all intersections, we

take the acute angle, which means θt1,2, α
t
1,2 and βt

1,2 are in
[0, π/2]. Thus, the 4-tuple we used to create LFH(pt

1) is
(||dt

1,2||2, θt1,2, αt
1,2, β

t
1,2) and we normalize the histogram

by its l2 norm. The designed LFH has three good properties.
As we use the normalized feature, it is density invariant. As
θt1,2, α

t
1,2 and βt

1,2 are always acute angles, the feature is
also rotation and flip invariant, meaning that if we flip or
rotate dir(pt

1) the histogram will remain unchanged. This
design helps us to get a more robust feature descriptor for
matching. We set the resolution for each entry of the 4-tuple
to be 4 and it results in a descriptor in size of 256.

In the second step, we compute the correspondence be-
tween points from adjacent time frames t and t + tδ where
tδ ∈ {−1, 1}. We use the method from Rusu et al. [7]
to compute the correspondence between two point clouds
from t and t + tδ . To further validate the flow we get, we
use several heuristics to filter out obvious outliers. We first
discard all the flows that have a large magnitude. As the
flow is computed between two adjacent frames, it should
not be large. The second heuristic we use to filter the out-
liers is cycle consistency, where we compute the flow both
forward and backward to see if we can map back to the ori-
gin. If the mapped back point departs too far away from the
origin, we discard that flow.
Training of Encoder. As mentioned before, we train two
encoders E and Eimg together. In practice, we find that di-
rectly training E is not very stable and might not lead to
convergence. Thus, we learn the two encoders in a teach-
student manner, where we use Eimg as a teach model to train
E . We denote ximg,t as the output of Eimg and xpt,t as the
output of E . Then, we formulate the following MSE loss to
enforce the E to output similarly to Eimg:

Lts = ||ximg,t − xpt,t||2,

where we restraint the gradient from Lts from back-

MSE↓ PSNR↑ SSIM↑ LPIPS↓
E on SEEN 29.48 34.05 0.9657 0.1109

Eimg on SEEN 29.44 34.05 0.9657 0.1109
E on UNSEEN 34.97 33.21 0.9587 0.1209

Eimg on UNSEEN 37.36 32.94 0.9559 0.1333

Table 6. Metrics on Novel Views. We show quantitative results
of different encoders under both SEEN and UNSEEN sequence of
the same hair styles.

propagating to Eimg while training.

1.3. Ablation on Different Encoders

We show quantitative evaluations on rendering quality
of different encoders on both the SEEN and UNSEEN se-
quences in Tab. 6. Our E performs similarly to the Eimg

on the novel views of the SEEN sequence. This result is
as expected due to the nature of teach-student model and
we train our model on the SEEN sequence with the training
views. On the UNSEEN sequence, we find our E performs
better than Eimg . We hypothesis that this is because there is
a smaller domain gap between the point clouds from SEEN
sequence and UNSEEN sequence while the multi-view im-
ages vary a lot due to the head motion. The CNN is not
good for handling such changes as the head motion is not
2D translation invariant after projection while point encoder
can process point clouds with better 3D structure awareness.

1.4. Ablation on Different Designs of the Dynamic
Model

We show the comparisons of different dynamic models
and per-frame driven models in Tab. 7. We find that our
model offers a significant improvement over the per-frame
driven model that takes head pose or motion as input. This
result is because the hair motion is not only determined by
the head pose or the previous history of head pose but also
the initial states of the hair. In Fig. 2, we visualize how each
model drifts by plotting the Chamfer distance between the
regressed point cloud and the ground truth point cloud. We
find that adding head relative gravity direction can improve
the model performance on slow motions.

MSE(↓) PSNR(↑) SSIM(↑) LPIPS(↓) ChamDis(↓)
pf w/ hair img 37.36 32.94 0.9559 0.1333 10.47
pf w/ hair pts 34.97 33.21 0.9587 0.1209 10.46

pf w/ head pos 47.43 32.01 0.9458 0.1522 18.94
pf w/ head mot 40.25 32.64 0.9508 0.1333 13.31

dyn w/o cos 44.96 32.26 0.9458 0.1327 25.49
dyn w/o cyc 45.22 32.23 0.9453 0.1335 26.79
dyn w/o grav 40.12 32.64 0.9504 0.1268 13.76

dyn 38.49 32.80 0.9532 0.1211 11.12

Table 7. Ablation of Different Dynamic Models.

Figure 2. ChamDist v.s. time. We plot Chamfer distance vs. time
of different dynamic models to show drifting.

1.5. Effect of the Initialization

We test how robust our model is to the initialization of
the hair point cloud. In Fig. 3, we show animation results
from models of two different hair styles (hs) with different
initialization hair point clouds. The results look sharp when
the model is matched with the correct hair style, but blurry
when we use mismatched hair point clouds for initializa-
tion. However, we find our model self-rectifies and returns
to a stable state after a certain number of iterations. This
ability of stablization could be partially due to the model
prior stored in the point encoder as well as the pooling op-
eration in the point encoder that denoise the inputs.

time 0 time n
hs1 init. hs2 init. hs1 init. hs2 init.

hs1
mod.

hs2
mod.

Figure 3. Effect of Initialization. We initialize two different
models (hs1 mod. and hs2 mod.) with two different hair point
clouds (hs1 and hs2) in two time steps. The green box indicates
matched initialization while orange indicates mismatched initial-
ization. Although the mismatched initialization shows blurry re-
sults at first, the model automatically corrects itself when there is
no head motion.

Seq01 Seq02 Seq03
HVH [10] 0.6685 0.4121 0.3766

Ours 0.8289 0.9243 0.8571

Table 8. IoU(↑) between rendered hair silhouette and ground truth
hair segmentation.

MSE(↓) PSNR(↑) SSIM(↑) LPIPS(↓)
MVP 66.21 30.36 0.9291 0.2830
Ours 29.44 34.05 0.9657 0.1109

Table 9

1.6. Effect of Segmentation loss

In HVH [10], certain level of hair and head disentangle-
ment is achieved even without using any supervision like
segmentation. In Tab 8, we show the IoU between the ren-
dered silhouette of hair volumes and ground truth hair seg-
mentatation of the different methods.

1.7. Further Ablation on the Point Encoder

To further study the point encoder E’s ability to denoise
the encoding, we tested the encoder with inputs that con-
taining different level of noise. Similar to the study in the
main paper, we first extract a fixed encoding z and add noise
n to it as ẑ=z+n and do noise removal as z̄= E(D(ẑ)).
We extend this by adding different levels of noise by mul-
tiplying n with different scalars. Please refer to the video
navigation page1 for more details.

1.8. Further Ablation on Novel View Synthesis

We compare our method with MVP [2] on the longer
sequences we captured with scripted head motion. Recon-
struction related metrics are shown in Tab. 9. We found
that NeRF-based methods can not fit to longer sequences
properly. This problem might be due to the large range of
motion exhibited in the videos as well as the length of the
video. HVH is not applicable because it does not support
hair tracking across segmented sequences of different hair
motion. Compared to MVP, we achieve better reconstruc-
tion accuracy and improved perceptual similarity between
the rendered image and ground truth with the hair specific
modeling in our design.

1.9. Animation on Bald Head Sequences

We show animation results driven by head motions both
on lab multi-view video captures and in-the-wild phone
video captures. For results on in-the-wild phone video cap-
tures, please refer to the supplemental videos1. For phone

1https://ziyanw1.github.io/neuwigs/resources/
index.html

Figure 4. Animation on Bald Sequence. We animate a straight
brown hair with a nodding head.

captures, we ask the participants to face the frontal cam-
era of the phone and perform different head motions. Then,
we apply the face tracking algorithm in [1] to obtain face
tracking data that serves as the input to our method. The
initial hair state of the phone animation is sampled from the
lab captured dataset. We find our model generates reason-
able motions of hair under head motions like swinging and
nodding.

We also test our model on multi-view video captures
from the lab. As shown in Figs. 4 and 5, our model gener-
ates reasonable hair motions with respect to the head motion
while preserving multi-view consistency.

References
[1] Chen Cao, Tomas Simon, Jin Kyu Kim, Gabe Schwartz,

Michael Zollhoefer, Shun-Suke Saito, Stephen Lombardi,

Figure 5. Animation on Bald Sequence. We animate short blue
pigtails with a nodding head.

Shih-En Wei, Danielle Belko, Shoou-I Yu, Yaser Sheikh, and
Jason Saragih. Authentic volumetric avatars from a phone
scan. ACM Trans. Graph., 41(4), jul 2022. 5

[2] Stephen Lombardi, Tomas Simon, Gabriel Schwartz,
Michael Zollhoefer, Yaser Sheikh, and Jason Saragih. Mix-
ture of volumetric primitives for efficient neural rendering.
ACM Transactions on Graphics (TOG), 40(4), July 2021. 4

[3] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Recti-
fier nonlinearities improve neural network acoustic models.
In Proc. icml, volume 30, 2013. 1, 2

[4] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European Conference on Computer Vision.
Springer, 2020. 1

[5] Giljoo Nam, Chenglei Wu, Min H Kim, and Yaser Sheikh.
Strand-accurate multi-view hair capture. In Proceedings of

Figure 6. Animation on Bald Sequence. We animate curly
blonde pigtails with a rotating head.

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 155–164, 2019. 3

[6] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2017.
2

[7] Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and
Michael Beetz. Aligning point cloud views using persistent
feature histograms. In 2008 IEEE/RSJ international con-
ference on intelligent robots and systems, pages 3384–3391.
IEEE, 2008. 3

[8] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, and

Figure 7. Animation on Bald Sequence. We animate burly
blonde pigtails with a nodding head.

Michael Beetz. Persistent point feature histograms for 3d
point clouds. In Proc 10th Int Conf Intel Autonomous Syst
(IAS-10), Baden-Baden, Germany, pages 119–128, 2008. 2

[9] Tim Salimans and Durk P Kingma. Weight normalization:
A simple reparameterization to accelerate training of deep
neural networks. Advances in neural information processing
systems, 29, 2016. 1

[10] Ziyan Wang, Giljoo Nam, Tuur Stuyck, Stephen Lombardi,
Michael Zollhoefer, Jessica Hodgins, and Christoph Lassner.
Hvh: Learning a hybrid neural volumetric representation for
dynamic hair performance capture, 2021. 2, 4

Figure 8. Animation on Bald Sequence. We animate curly
blonde pigtails with a rotating head.

Figure 9. Animation on Bald Sequence. We animate a curly ash
blonde hair with a nodding head.

