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In this part, we provide the following material: (1) Sec. 1
describes detailed architectures of Omni-SR; (2) Sec. 2
presents ablation study for aggregation order in OSAG;
(3) Sec. 3 demonstrates LAM [3] comparisons of different
lightweight methods.

1. Detailed Network Architecture
Our OSA blocks follow typical Transformer designs

with Feedforward network (FFN) and LayerNorm, and the
only difference is that self-attention operation is replaced
with our proposed OSA operator. For FFN, we adopt the
GDFN proposed by Restormer [7]. The detailed architec-
ture of OSA block is shown in Figure 1.

We use Local-Conv block, Meso-OSA block and Global-
OSA block to build the OSAG for omni-scale aggregation.
In experiments, we set the number of OSAG as 5 to make
the model size around 800K for a fair comparison with other
methods. We can further reduce the OSAG number to get
smaller Omni-SR models. When OSAG number is reduced
from 5 to 1, model parameters are reduced from 792K to
211k (792K → 647K → 502K → 356K → 211K).

2. Impact of aggregation order.
We adopt three different interaction modules (i.e, lo-

cal, meso and global) to build the Omni-Scale Aggregation
Group (OSAG), aiming for omni-scale information aggre-
gation from local to global. In order to explore the most ef-
fective combination, we conduct ablation experiments with
different combination orders for ×4 SR on Urban100 and
present the results in Table 1. From the table, we can ob-
serve that placing Local-Conv at the front achieves pleas-
ant result compared to other variant models, which demon-
strates that it is more suitable to perform local feature ag-
gregations and then aggregate them globally. This phe-
nomenon is consistent with the results of some recent hy-
brid models in image classification [2,6] and image restora-
tion [5]. The Local-Conv → Meso-OSA → Global-OSA
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Figure 1. Detailed architecture of the proposed OSA block.

Aggregation Order PSNR / SSIM
Global-OSA → Meso-OSA → Local-Conv 26.56 / 0.8017
Global-OSA → Local-Conv → Meso-OSA 26.55 / 0.8016
Meso-OSA → Local-Conv → Global-OSA 26.49 / 0.8014
Meso-OSA → global-Conv → Local-Conv 26.52 / 0.8015
Local-Conv → Global-OSA → Meso-OSA 26.60 / 0.8018
Local-Conv → Meso-OSA → Global-OSA 26.64 / 0.8018

Table 1. Aggregation Order study in OSAG.

setting obtains the best SR performance, and therefore we
employ this combination order in all experiments.

3. LAM comparison.
To further evaluate the effectiveness of Omni-SR, we

compare the LAM [3] results of our model with other ad-
vanced lightweight methods (i.e., CARN [1], ESRT [5] and
SwinIR [4]) for ×4 SR. LAM tool is proposed to study
the interactive capabilities of models, and diffusion index
(DI) [3] is introduced to quantify the above-mentioned in-
teraction range. The larger LAM range and DI value in-
dicate a larger receptive field (i.e., interaction scope) for
the model, which yields better performance. From Fig-
ure 2, it can be observed that our Omni-SR achieves largest
LAM range and DI value compared with CNN-based or
transformer-based models, verifying the effectiveness of
the proposed omni-dimensional and omni-scale aggregation
scheme. This phenomenon is also in line with the better per-
formance of our method on five benchmark datasets.
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Figure 2. LAM [3] comparison for ×4 SR on Urban100: img 012.png and Set14: zebra.png. LAM tool is proposed to study the
interactive capabilities of models, and diffusion index (DI) [3] is introduced to quantify the above-mentioned interaction range. The larger
LAM range and DI value indicate a larger receptive field (i.e., interaction scope), which yields for better performance. As shown in the
figure, our Omni-SR achieves the largest LAM range and DI value, thus obtaining the best performance.
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