
Appendix for: On the Pitfall of Mixup Training for Uncertainty Calibration
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1. Calibration Metrics
Except for ECE, ACE and NLL mentioned in the paper, we have further evaluated models on two other calibration metrics:
Adaptive Expected Calibration Error (AdaECE) [12] and Thresholded Expected Calibration Error (TECE) [12]. We formally
introduce them as follows.
ECE. As we discussed in Subsection 2.2 in paper, a perfectly calibrated model should satisfy P(ŷ=y | p̂=p)=p for p∈ [0, 1].
Given this, calibration performance could be measured by the difference between accuracy and confidence in expectation,
i.e., Ep̂ [P(ŷ=y | p̂=p)−p]. In practice, this can be approximated by first grouping all the samples into M equally spaced
bins {Bm}Mm=1 with respect to their confidence scores, and taking a weighted average of the accuracy/confidence difference
between these bins 1. Formally, ECE is defined as [9]:

ECE =

M∑
m=1

|Bm|
N

|acc (Bm)− avgConf (Bm)| ,

where N denotes the total number of samples in testing set.
ACE. By replace the weighting term in ECE with a uniform weighting factor, ACE can be formally defined as [11]:

ACE =
1

M

M∑
m=1

|acc (Bm)− avgConf (Bm)| .

AdaECE. Different from ECE that bins with equal confidence interval, AdaECE adaptively groups the samples into intervals
with same sample size. In this way, each bin Br in {Br}Rr=1 has N/M samples and the metric can be formally defined
as [12]:

AdaECE =
1

R

R∑
r=1

|acc (Br)− avgConf (Br)| .

1In our experiments, we set the bin number as 15 for all calibration metrics.
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TECE. Practitioner may only focus on the calibration of the predictions with confidence scores above a given threshold. To
this end, TECE evaluates by firstly filtering out the samples with confidence below a specified threshold, and then calculating
ECE on the remaining samples [12].
NLL. The negative log-likelihood is also commonly used to measure a model’s prediction quality [3]. In multi-class classi-
fication setting, NLL is equivalent to cross-entropy, which is commonly used as a loss function in deep learning. Formally,
NLL is defined as:

NLL = − 1

N

N∑
i=1

log(p(yi|xi)),

where p(yi|xi) denotes the model’s output confidence on the ground-truth label yi. It should be noted that different from
other calibration metrics, NLL takes the ground-truth label of each individual sample into account in the evaluation, and
hence would be influenced by the model’s predictive power. For example, even with zero ECE, the model cannot achieve
good NLL with poor accuracy.

2. Temperature Scaling
Due to the simplicity and impressive generalization performance, Temperature Scaling (TS) is the most commonly adopted

post-calibration method. By scaling the logits produced by a learned model with a temperature τ , the sharpness of output
probabilities can be significantly changed. Formally, after TS, model’s confidence can be expressed as:

p̂ = max
i∈[K]

exp (δi/τ)∑K
k=1 exp (δi/τ)

,

where δi means the i-th logit element. The temperature τ softens the output probability with τ >1 and sharpens the probability
with τ <1. As τ→0, model’s outputs collapse to a one-hot vector. As τ→∞, model’s outputs converge to a uniform vector.
In practice, we need to first find the temperature that yields the best calibration result on a hold-out validation set, and then
apply this temperature to the softmax layer.

3. Details of our Approaches
3.1. Mixup Inference

Derivation of Equation (4). As we presented in paper, under the basic assumption that linear interpolation of features leads
to linear interpolation of the outputs, a mixup-trained model’s outputs would satisfy the following equations:

̂̃y1 = λ1ŷa + (1− λ1)ŷb,̂̃y2 = λ2ŷa + (1− λ2)ŷb,

where ŷα and ̂̃yi denote the model outputs of the original and mixed samples respectively. Then, simple derivations of this
system of equations can be obtained:

ŷa =
̂̃y1 − ̂̃y2(1− λ1)/(1− λ2)

λ1 − λ2(1− λ1)/(1− λ2)
,

ŷb =
̂̃y1 − ̂̃y2λ2/λ1

1− λ2 − (1− λ1)λ2/λ1
.

(1)

Therefore, by rewriting ̂̃yi as f(x̃i), we obtain the decoupled outputs of xa and xb as shown by Equation (4) in the paper.
Algorithm. Algorithm 1 shows the pseudo-code of our mixup inference (MI) approach. The major difference between our
MI approach and the MI approach used in [13] lies in the decoupling process as shown in line 7. To this end, we need to mix
the inputs of samples twice before the forward pass, where we adopt the same coefficient α as is used in the training phase.
Moreover, by setting λ2 = 0, the outputs of x2 can be collected before testing, and hence only one single forward pass is
necessary in each iteration.



Algorithm 1 Mixup Inference (MI)

Input: The model f ; the sample x; the sample pool S; the coefficient α; the number of inference iterations T .
Procedure:
Initialize ŷ = 0;

1: for t = 1 to T do
2: Randomly select a sample x′ from S;
3: Sample λ1 and λ2 form Beta[0.5,1](α, α) and Beta[0,0.5](α, α) respectively;
4: Mix sample x with x′ twice as: x̃1 = λ1x+ (1− λ1)x

′, x̃2 = λ2x+ (1− λ2)x
′;

5: Forward pass of mixed samples: ̂̃y1 = f(x̃1), ̂̃y1 = f(x̃1);

6: Calculate ŷt by decoupling ỹ1, ỹ1 as ŷt =
̂̃y1−̂̃y2(1−λ1)/(1−λ2)
λ1−λ2(1−λ1)/(1−λ2)

;
7: Update the logit output: ŷ = ŷ + 1

T ŷt;
8: end for

Output: The probabilistic output softmax(ŷ).

3.2. Mixup Inference in Training

To employ our MIT strategy, one only needs to embed the mix-then-decouple procedure shown line 2-8 of Algorithm 1
into each mini-batch training process. We should note that there exists inevitable noise in models’ outputs, and the noise
would be enlarged in the decoupling process if the difference between λ1 and λ2 is small. Therefore, we propose to sample
λ1 and λ2 from Beta[0.5,1](α, α) and Beta[0,0.5](α, α) respectively, or further force them to be greater than a specific constant.
A Pytorch example of mini-batch training is shown as follows:

Moreover, the above mix-then-decouple process can be further embedded into the latent layers of neural networks. As we
mentioned in the paper, MIT-A applies this process in each block and also the last layer of ResNets. As is shown in Figure
A(c), the features produced by the first block are decoupled into z1a, z

1
b . Then, we remix z1a, z

1
b with newly sampled λ1

1, λ
1
2

and feed the remixed features into the next block. Most importantly, the logit outputs in the end of forward pass will be
decoupled to approximately recover the ŷa and ŷb before calculating the softmax cross-entropy loss.
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Figure A. (a), (b) and (c) show the pipelines of vanilla mixup, our MIT-L and MIT-A respectively, where where loss function L is the
widely used softmax cross-entropy loss. For MIT-A, we simply apply the mix-then-decouple process in every block of ResNets. It should
be noted that this process can also be applied in each latent layer.

3.3. Implementations

Datasets. Our experiments are conducted on 4 image classification datasets: SVHN [10], CIFAR10, CIFAR-100 [4] and
Tiny-ImageNet [2]. In our experiments, we need hold-out validation sets to perform post-calibration, so we split each dataset
into train/validation/test sets as following ratios: 68257/5k/26032 for SVHN, 45k/5k/10k for CIFAR-10/100 and 90k/10k/10k
for Tiny-ImageNet.
Optimization. The implementation is based on PyTorch [14] and the experiments were carried out with NVIDIA Tesla V100
GPU. We use SGD as the opimizer with a momentum of 0.9, a weight decay of 1e-4. We train on SVHN and CIFAR-10/100
by total 350 epochs with the initial learning rate as 0.1, and divide it by a factor of 10 after 150 epochs and 250 epochs
respectively. We train on Tiny-ImageNet by total 200 epochs with the initial learning rate as 0.01, and divide it by a factor
of 10 after 100 epochs and 150 epochs respectively. We set the batch size as 128 on SVHN, CIFAR-10/100, and 64 on Tiny-
ImageNet. The pretrained checkpoints used in our paper are provided by Pytorch official release 2. Our code is available on
GitHub: https://github.com/dengbaowang/Mixup-Inference-in-Training.

4. Additional Experiment Results
4.1. Results on other Metrics

Table A, D, B and C present the comparative results on calibrated ACE, AdaECE, TECE and NLL. Same with the main
paper, the orange/blue color indicates that a method outperforms/underperforms ERM in average. The boldface and underline
denote the best and the second best results of each row, and the marker † means the backbone is pretrained. The reported
results are the average of 3 random runs, while in each run the results of last 10 epochs are averaged as the final result. As
is shown in these tables, the results on these four calibration metrics are highly consistent to the results on ECE. On ACE,
AdaECE and TECE (τ = 0.6), our approaches, as well as two ablated mixup variants Mixup-SC and Mixup-IO, improve
calibration performance compared with ERM. It is notable that if we do not consider the predictive performance, Mixup-
SC and Mixup-IO even achieve larger improvements on these three metrics on average. On the contrary, vanilla mixup
and two variants Mixup-DT, Mixup-TO underperform ERM in most cases. For NLL, since it also reflects the predictive
performance, our approaches significantly outperform the others, including Mixup-SC and Mixup-IO. Figure B shows the
comparative results in terms of the calibrated TECE with different choices of threshold τ on ResNet110. When τ becomes
larger, more and more samples are discarded and only a few confident samples would be remained for evaluation. As is
shown, our approaches achieve better results than most of the others. We can also observe that, without the constraint on ∆λ
or the mixup process in latent layers (see MIT-A and MIT-L (∆λ > 1

2 )), our strategy still works well on calibration, while
these techniques benefit the predictive accuracy. Table E shows the results with DenseNet121, where the overall results are

2https://pytorch.org/vision/stable/models.html

https://github.com/dengbaowang/Mixup-Inference-in-Training
https://pytorch.org/vision/stable/models.html


Table A. The overall comparative results in terms of the Calibrated ACE.

Backbones ERM
Mixup
(0.1)

Mixup
(0.5)

Mixup
(1.0)

Mixup
(DT)

Mixup
(TO)

Mixup
(SC)

Mixup
(IO)

MIT-A
∆λ> 1

2

MIT-L
(∆λ>1

2
)

MIT-A
(∆λ>1

2
)

SVHN

ResNet18 5.74 (8) 5.39 (7) 6.06 (9) 6.36 (10) 4.98 (5) 7.27 (11) 4.79 (2) 4.76 (1) 5.00 (6) 4.92 (3) 4.98 (4)
ResNet50 7.08 (5) 10.5 (10) 7.45 (8) 7.26 (7) 7.16 (6) 11.3 (11) 4.94 (1) 5.12 (2) 6.35 (4) 5.27 (3) 7.90 (9)
ResNet110 6.77 (5) 6.82 (7) 6.77 (6) 7.26 (9) 8.55 (10) 14.1 (11) 5.26 (2) 6.26 (3) 6.29 (4) 5.01 (1) 7.25 (8)
ResNet152 8.94 (7) 12.9 (10) 8.72 (6) 10.3 (8) 10.7 (9) 13.0 (11) 6.14 (3) 4.93 (2) 7.86 (5) 4.31 (1) 7.16 (4)
Avg. gain — + 1.80 + 0.12 + 0.67 + 0.72 + 4.33 – 1.84 – 1.86 – 0.75 – 2.25 – 0.30

CIFAR-10

ResNet18 4.81 (1) 6.01 (3) 7.73 (7) 8.36 (9) 7.09 (6) 9.32 (11) 5.11 (2) 7.94 (8) 6.02 (4) 6.21 (5) 8.45 (10)
ResNet50 6.78 (4) 9.59 (7) 11.6 (10) 10.5 (9) 13.2 (11) 9.87 (8) 6.53 (2) 5.97 (1) 6.63 (3) 8.13 (6) 7.36 (5)
ResNet110 6.72 (3) 11.2 (8) 13.0 (10) 10.6 (7) 12.0 (9) 15.6 (11) 5.98 (2) 5.39 (1) 8.18 (6) 7.24 (4) 7.70 (5)
ResNet152 7.47 (5) 9.69 (7) 11.9 (9) 13.8 (11) 12.2 (10) 10.8 (8) 6.57 (1) 7.35 (4) 6.72 (2) 7.93 (6) 7.19 (3)
Avg. gain — + 2.69 + 4.65 + 4.39 + 4.70 + 4.97 – 0.39 + 0.21 + 0.44 + 0.93 + 1.23

CIFAR-100

ResNet18 3.46 (9) 2.69 (4) 2.08 (1) 2.16 (2) 8.41 (11) 6.23 (10) 2.69 (5) 3.25 (8) 2.29 (3) 2.91 (7) 2.70 (6)
ResNet50 4.35 (9) 3.66 (8) 3.43 (7) 2.88 (3) 6.58 (11) 6.04 (10) 2.45 (1) 3.08 (4) 2.59 (2) 3.23 (6) 3.17 (5)
ResNet110 3.61 (6) 2.70 (2) 4.19 (9) 4.09 (8) 7.53 (11) 5.70 (10) 2.49 (1) 3.04 (3) 3.30 (4) 3.99 (7) 3.44 (5)
ResNet152 3.40 (6) 3.29 (5) 2.88 (2) 4.30 (9) 6.70 (11) 6.06 (10) 2.48 (1) 2.95 (4) 2.88 (3) 3.41 (7) 3.58 (8)
Avg. gain — – 0.62 – 0.56 – 0.34 + 3.59 + 2.30 – 1.17 – 0.62 – 0.93 – 0.32 – 0.48

Tiny-ImageNet

ResNet18 1.59 (3) 1.60 (4) 1.59 (2) 1.79 (9) 2.19 (11) 1.82 (10) 1.75 (8) 1.63 (5) 1.56 (1) 1.73 (7) 1.70 (6)
ResNet50 1.57 (3) 1.67 (5) 1.77 (6) 2.04 (9) 2.06 (10) 2.02 (8) 1.79 (7) 2.16 (11) 1.57 (2) 1.50 (1) 1.66 (4)
ResNet110 1.67 (4) 1.94 (8) 1.75 (6) 2.63 (11) 2.33 (10) 1.47 (1) 2.10 (9) 1.76 (7) 1.69 (5) 1.63 (2) 1.64 (3)
ResNet152 1.65 (4) 2.45 (8) 2.79 (9) 2.39 (7) 3.11 (11) 2.07 (6) 1.61 (3) 2.92 (10) 1.76 (5) 1.37 (1) 1.55 (2)
ResNet18† 1.55 (2) 1.76 (7) 1.63 (4) 1.60 (3) 2.89 (11) 2.23 (10) 2.08 (9) 1.76 (5) 1.76 (6) 1.87 (8) 1.51 (1)
ResNet152† 2.53 (6) 2.23 (5) 2.71 (8) 2.64 (7) 7.05 (11) 6.25 (10) 1.70 (1) 2.12 (4) 2.08 (3) 2.93 (9) 1.75 (2)

Avg. gain — + 0.18 + 0.27 + 0.41 + 1.51 + 0.88 + 0.07 + 0.29 – 0.02 + 0.07 – 0.12

Table B. The overall comparative results in terms of the Calibrated AdaECE.

Backbones ERM
Mixup
(0.1)

Mixup
(0.5)

Mixup
(1.0)

Mixup
(DT)

Mixup
(TO)

Mixup
(SC)

Mixup
(IO)

MIT-A
∆λ> 1

2

MIT-L
(∆λ>1

2
)

MIT-A
(∆λ>1

2
)

SVHN

ResNet18 0.70 (2) 1.21 (7) 1.60 (9) 1.37 (8) 1.75 (10) 1.87 (11) 0.81 (6) 0.78 (5) 0.60 (1) 0.71 (3) 0.78 (4)
ResNet50 1.09 (6) 1.47 (8) 1.60 (9) 1.41 (7) 2.35 (10) 2.47 (11) 0.72 (2) 0.69 (1) 0.74 (5) 0.73 (4) 0.72 (3)
ResNet110 1.03 (6) 1.52 (8) 1.77 (9) 1.32 (7) 2.42 (11) 2.25 (10) 0.77 (3) 0.80 (4) 0.69 (1) 0.77 (2) 0.84 (5)
ResNet152 1.15 (6) 1.47 (8) 1.50 (9) 1.25 (7) 2.26 (11) 2.26 (10) 0.81 (3) 0.78 (2) 0.88 (5) 0.66 (1) 0.84 (4)
Avg. gain — + 0.42 + 0.62 + 0.34 + 1.19 + 1.21 – 0.21 – 0.23 – 0.26 – 0.27 – 0.19

CIFAR-10

ResNet18 0.73 (6) 1.72 (9) 1.68 (8) 1.36 (7) 3.40 (11) 2.90 (10) 0.55 (4) 0.57 (5) 0.46 (1) 0.52 (2) 0.55 (3)
ResNet50 0.65 (5) 2.04 (9) 1.92 (8) 1.24 (7) 3.85 (11) 3.33 (10) 0.51 (3) 0.39 (1) 0.64 (4) 0.50 (2) 0.67 (6)
ResNet110 0.81 (5) 2.18 (9) 1.72 (8) 1.25 (7) 3.70 (11) 3.34 (10) 0.50 (4) 0.40 (1) 0.45 (2) 0.48 (3) 0.87 (6)
ResNet152 0.71 (5) 2.20 (9) 1.83 (8) 1.13 (7) 3.64 (11) 3.23 (10) 0.49 (2) 0.40 (1) 0.55 (4) 0.51 (3) 0.83 (6)
Avg. gain — + 1.30 + 1.06 + 0.51 + 2.92 + 2.47 – 0.21 – 0.28 – 0.20 – 0.22 – 0.01

CIFAR-100

ResNet18 2.54 (9) 1.68 (5) 1.08 (1) 1.20 (2) 5.64 (11) 3.55 (10) 2.00 (7) 1.78 (6) 1.40 (3) 2.12 (8) 1.61 (4)
ResNet50 2.35 (7) 1.81 (2) 2.55 (8) 2.66 (9) 5.82 (11) 5.70 (10) 1.77 (1) 2.01 (5) 1.85 (4) 2.07 (6) 1.83 (3)
ResNet110 2.58 (7) 1.35 (1) 3.32 (9) 3.05 (8) 6.07 (11) 5.38 (10) 1.65 (2) 1.87 (4) 1.84 (3) 2.17 (6) 1.89 (5)
ResNet152 2.34 (6) 1.77 (3) 2.57 (8) 3.63 (9) 5.56 (11) 5.05 (10) 1.58 (2) 1.88 (4) 1.57 (1) 2.36 (7) 2.00 (5)
Avg. gain — – 0.80 – 0.07 + 0.18 + 3.32 + 2.46 – 0.70 – 0.56 – 0.78 – 0.27 – 0.62

Tiny-ImageNet

ResNet18 1.40 (4) 1.32 (1) 1.34 (2) 1.47 (5) 15.6 (9) 17.0 (11) 16.0 (10) 15.4 (8) 1.50 (6) 1.57 (7) 1.38 (3)
ResNet18† 1.17 (2) 1.30 (4) 1.63 (6) 1.69 (7) 16.0 (10) 15.6 (8) 15.7 (9) 16.0 (11) 1.22 (3) 1.17 (1) 1.40 (5)
ResNet110 1.31 (1) 1.49 (5) 1.64 (6) 2.20 (7) 16.2 (9) 16.6 (10) 16.8 (11) 15.1 (8) 1.36 (2) 1.38 (3) 1.38 (4)
ResNet152 1.35 (2) 2.20 (7) 1.88 (5) 2.04 (6) 15.6 (10) 15.4 (9) 16.3 (11) 10.9 (8) 1.51 (4) 1.26 (1) 1.36 (3)
ResNet18 1.14 (2) 1.46 (6) 1.16 (3) 1.29 (4) 2.82 (11) 1.90 (10) 1.47 (7) 1.65 (8) 1.45 (5) 1.67 (9) 1.04 (1)

ResNet152† 1.80 (6) 1.76 (5) 2.66 (8) 2.67 (9) 5.23 (10) 7.12 (11) 1.25 (2) 1.69 (4) 1.28 (3) 2.49 (7) 1.18 (1)
Avg. gain — + 0.22 + 0.35 + 0.53 + 10.5 + 10.9 + 9.92 + 8.78 + 0.02 + 0.22 – 0.07



Table C. The overall comparative results in terms of the Calibrated TECE.

Backbones ERM
Mixup
(0.1)

Mixup
(0.5)

Mixup
(1.0)

Mixup
(DT)

Mixup
(TO)

Mixup
(SC)

Mixup
(IO)

MIT-A
∆λ> 1

2

MIT-L
(∆λ>1

2
)

MIT-A
(∆λ>1

2
)

SVHN

ResNet18 0.37 (1) 0.89 (7) 1.04 (11) 0.93 (9) 0.90 (8) 0.98 (10) 0.38 (3) 0.49 (5) 0.37 (2) 0.54 (6) 0.43 (4)
ResNet50 0.79 (6) 2.20 (11) 1.08 (8) 1.04 (7) 1.44 (10) 1.28 (9) 0.47 (4) 0.38 (1) 0.41 (2) 0.41 (3) 0.56 (5)
ResNet110 0.65 (6) 0.96 (7) 1.18 (9) 1.02 (8) 1.93 (11) 1.65 (10) 0.40 (2) 0.52 (4) 0.40 (1) 0.41 (3) 0.61 (5)
ResNet152 0.80 (6) 0.97 (8) 1.11 (9) 0.94 (7) 1.17 (10) 1.26 (11) 0.48 (2) 0.63 (5) 0.54 (3) 0.44 (1) 0.61 (4)
Avg. gain — + 0.60 + 0.45 + 0.33 + 0.70 + 0.64 – 0.21 – 0.14 – 0.22 – 0.20 – 0.09

CIFAR-10

ResNet18 0.49 (6) 0.91 (8) 1.04 (9) 0.82 (7) 1.57 (11) 1.31 (10) 0.47 (4) 0.42 (1) 0.43 (2) 0.45 (3) 0.49 (5)
ResNet50 0.63 (6) 0.96 (8) 1.02 (9) 0.80 (7) 3.43 (11) 1.53 (10) 0.49 (3) 0.31 (1) 0.51 (4) 0.43 (2) 0.54 (5)
ResNet110 0.66 (5) 0.98 (9) 0.85 (8) 0.74 (7) 1.36 (10) 2.49 (11) 0.41 (3) 0.37 (1) 0.40 (2) 0.43 (4) 0.66 (6)
ResNet152 0.54 (6) 1.02 (9) 0.97 (8) 0.70 (7) 1.40 (10) 1.72 (11) 0.49 (4) 0.34 (1) 0.46 (3) 0.35 (2) 0.53 (5)
Avg. gain — + 0.38 + 0.39 + 0.18 + 1.36 + 1.18 – 0.11 – 0.21 – 0.12 – 0.16 – 0.02

CIFAR-100

ResNet18 1.46 (8) 0.84 (1) 0.97 (5) 0.85 (3) 2.31 (11) 1.79 (10) 1.16 (7) 0.85 (2) 1.02 (6) 1.52 (9) 0.91 (4)
ResNet50 1.41 (7) 1.22 (4) 2.22 (9) 2.08 (8) 4.29 (10) 4.85 (11) 1.09 (2) 1.15 (3) 1.26 (5) 1.39 (6) 0.99 (1)
ResNet110 1.37 (7) 0.87 (1) 2.75 (9) 2.18 (8) 6.95 (11) 4.86 (10) 1.12 (5) 0.90 (2) 1.00 (3) 1.37 (6) 1.01 (4)
ResNet152 1.48 (7) 1.11 (5) 2.27 (8) 2.47 (9) 3.41 (10) 5.75 (11) 1.10 (4) 1.01 (1) 1.04 (2) 1.33 (6) 1.09 (3)
Avg. gain — – 0.41 + 0.62 + 0.46 + 2.80 + 2.88 – 0.31 – 0.45 – 0.35 – 0.02 – 0.42

Tiny-ImageNet

ResNet18 1.46 (3) 2.28 (10) 1.68 (5) 1.77 (8) 2.42 (11) 1.75 (7) 1.70 (6) 1.79 (9) 1.47 (4) 1.20 (2) 1.16 (1)
ResNet50 1.31 (8) 0.82 (1) 2.03 (10) 1.20 (6) 2.29 (11) 1.48 (9) 1.16 (5) 1.25 (7) 1.12 (4) 0.89 (2) 1.02 (3)
ResNet110 1.26 (4) 2.70 (9) 3.12 (10) 8.88 (11) 2.23 (7) 1.51 (5) 2.37 (8) 1.66 (6) 1.07 (2) 1.11 (3) 1.06 (1)
ResNet152 1.27 (2) 1.49 (4) 1.31 (3) 5.31 (10) 4.88 (9) 1.95 (7) 1.56 (5) 12.1 (11) 2.23 (8) 1.19 (1) 1.82 (6)
ResNet18† 1.04 (4) 1.06 (5) 0.87 (1) 1.33 (8) 1.46 (10) 1.16 (7) 2.22 (11) 0.94 (3) 0.94 (2) 1.38 (9) 1.12 (6)
ResNet152† 1.40 (6) 0.93 (4) 2.69 (8) 2.83 (9) 5.31 (10) 9.67 (11) 0.81 (2) 1.59 (7) 0.85 (3) 1.36 (5) 0.68 (1)

Avg. gain — + 0.25 + 0.66 + 2.26 + 1.80 + 1.63 + 0.34 + 1.93 – 0.01 – 0.10 – 0.14

Table D. The overall comparative results in terms of the Calibrated NLL.

Backbones ERM
Mixup
(0.1)

Mixup
(0.5)

Mixup
(1.0)

Mixup
(DT)

Mixup
(TO)

Mixup
(SC)

Mixup
(IO)

MIT-A
∆λ> 1

2

MIT-L
(∆λ>1

2
)

MIT-A
(∆λ>1

2
)

SVHN

ResNet18 0.16 (2) 0.17 (3) 0.20 (8) 0.22 (9) 0.18 (6) 0.17 (4) 0.20 (7) 0.23 (10) 0.18 (5) 0.25 (11) 0.15 (1)
ResNet50 0.15 (3) 0.15 (4) 0.17 (6) 0.19 (8) 0.20 (9) 0.21 (10) 0.17 (5) 0.19 (7) 0.14 (2) 0.22 (11) 0.14 (1)
ResNet110 0.15 (3) 0.15 (4) 0.16 (5) 0.18 (8) 0.21 (11) 0.20 (10) 0.16 (6) 0.17 (7) 0.13 (2) 0.19 (9) 0.12 (1)
ResNet152 0.14 (4) 0.14 (3) 0.15 (5) 0.17 (7) 0.21 (11) 0.19 (9) 0.16 (6) 0.17 (8) 0.13 (2) 0.19 (10) 0.12 (1)
Avg. gain — + 0.01 + 0.01 + 0.03 + 0.04 + 0.04 + 0.01 + 0.03 – 0.01 + 0.06 – 0.01

CIFAR-10

ResNet18 0.17 (9) 0.17 (8) 0.16 (4) 0.16 (5) 0.25 (11) 0.23 (10) 0.17 (7) 0.16 (6) 0.13 (2) 0.15 (3) 0.12 (1)
ResNet50 0.18 (9) 0.18 (8) 0.16 (7) 0.16 (5) 0.31 (11) 0.25 (10) 0.16 (6) 0.15 (4) 0.13 (2) 0.13 (3) 0.12 (1)
ResNet110 0.17 (9) 0.16 (8) 0.15 (6) 0.16 (7) 0.29 (11) 0.26 (10) 0.15 (5) 0.14 (4) 0.12 (1) 0.12 (3) 0.12 (2)
ResNet152 0.16 (8) 0.16 (9) 0.15 (7) 0.14 (5) 0.28 (11) 0.24 (10) 0.15 (6) 0.13 (4) 0.11 (2) 0.12 (3) 0.11 (1)
Avg. gain — – 0.00 – 0.01 – 0.01 + 0.11 + 0.07 – 0.01 – 0.02 – 0.04 – 0.03 – 0.04

CIFAR-100

ResNet18 0.97 (7) 0.96 (6) 0.92 (5) 0.90 (4) 1.28 (11) 1.04 (10) 1.02 (8) 1.04 (9) 0.84 (2) 0.88 (3) 0.84 (1)
ResNet50 0.98 (8) 0.91 (6) 0.89 (4) 0.90 (5) 1.51 (11) 1.20 (10) 1.00 (9) 0.95 (7) 0.77 (1) 0.84 (3) 0.80 (2)
ResNet110 0.89 (8) 0.85 (6) 0.82 (4) 0.85 (5) 1.43 (11) 1.10 (10) 0.92 (9) 0.86 (7) 0.76 (2) 0.80 (3) 0.74 (1)
ResNet152 0.92 (9) 0.84 (5) 0.82 (4) 0.85 (6) 1.32 (11) 1.12 (10) 0.91 (8) 0.87 (7) 0.74 (2) 0.78 (3) 0.72 (1)
Avg. gain — – 0.04 – 0.07 – 0.06 + 0.44 + 0.17 + 0.02 – 0.01 – 0.16 – 0.11 – 0.16

Tiny-ImageNet

ResNet18 2.36 (6) 2.39 (8) 2.37 (7) 2.33 (5) 3.14 (11) 2.51 (10) 2.48 (9) 2.31 (4) 2.13 (1) 2.21 (3) 2.15 (2)
ResNet50 2.22 (5) 2.24 (8) 2.23 (7) 2.22 (6) 3.10 (11) 2.41 (10) 2.34 (9) 2.20 (4) 2.04 (2) 2.09 (3) 2.03 (1)
ResNet110 2.28 (3) 2.62 (8) 2.59 (7) 3.44 (11) 3.19 (10) 2.66 (9) 2.52 (6) 2.46 (5) 2.19 (2) 2.43 (4) 2.07 (1)
ResNet152 2.38 (3) 3.03 (7) 3.63 (9) 3.76 (10) 3.36 (8) 2.64 (6) 2.59 (5) 4.55 (11) 2.32 (2) 2.49 (4) 2.26 (1)
ResNet18† 1.99 (4) 2.05 (7) 2.03 (5) 2.05 (6) 2.71 (11) 2.11 (8) 2.16 (10) 2.14 (9) 1.90 (2) 1.93 (3) 1.88 (1)
ResNet152† 1.60 (4) 1.59 (2) 1.64 (6) 1.69 (7) 2.55 (11) 1.88 (10) 1.74 (9) 1.74 (8) 1.56 (1) 1.59 (3) 1.60 (5)

Avg. gain — + 0.18 + 0.27 + 0.44 + 0.86 + 0.23 + 0.16 + 0.42 – 0.11 – 0.01 – 0.13



Table E. The overall comparative results in terms of the Accuracy, Calibrated ECE and Calibrated NLL on DenseNet-121.

Metrics ERM
Mixup
(0.1)

Mixup
(0.5)

Mixup
(1.0)

Mixup
(DT)

Mixup
(TO)

Mixup
(SC)

Mixup
(IO)

MIT-A
∆λ> 1

2

MIT-L
(∆λ>1

2
)

MIT-A
(∆λ>1

2
)

SVHN
Accuracy 94.9 (9) 95.8 (7) 96.5 (2) 96.5 (1) 94.1 (11) 94.6 (10) 95.4 (8) 95.8 (6) 96.1 (4) 96.4 (3) 96.1 (5)

ECE 0.54 (2) 1.00 (7) 0.93 (6) 1.18 (9) 1.37 (11) 1.21 (10) 1.02 (8) 0.48 (1) 0.66 (3) 0.71 (4) 0.85 (5)
NLL 0.14 (3) 0.16 (5) 0.17 (6) 0.17 (8) 0.23 (11) 0.21 (10) 0.16 (4) 0.17 (7) 0.19 (9) 0.12 (1) 0.13 (2)

CIFAR-10
Accuracy 94.9 (9) 95.8 (7) 96.5 (2) 96.5 (1) 94.1 (11) 94.6 (10) 95.4 (8) 95.8 (6) 96.1 (4) 96.4 (3) 96.1 (5)

ECE 1.08 (8) 1.13 (9) 0.95 (7) 0.91 (6) 1.46 (10) 1.48 (11) 0.48 (2) 0.57 (4) 0.53 (3) 0.76 (5) 0.38 (1)
NLL 0.16 (9) 0.16 (8) 0.15 (6) 0.15 (7) 0.28 (11) 0.25 (10) 0.14 (5) 0.13 (4) 0.12 (3) 0.11 (1) 0.11 (2)

CIFAR-100
Accuracy 77.4 (8) 78.5 (6) 80.4 (3) 80.5 (2) 73.9 (11) 77.7 (7) 76.4 (10) 76.8 (9) 79.0 (4) 80.6 (1) 78.8 (5)

ECE 2.61 (7) 1.35 (2) 3.59 (9) 3.10 (8) 5.41 (11) 4.22 (10) 1.96 (4) 2.02 (5) 2.07 (6) 1.88 (3) 1.29 (1)
NLL 0.85 (7) 0.82 (6) 0.79 (4) 0.79 (5) 1.34 (11) 1.16 (10) 0.86 (8) 0.87 (9) 0.75 (3) 0.69 (1) 0.74 (2)

Table F. The overall comparative results in terms of the Calibrated ECE with Histogram Binning.

Metrics ERM
Mixup
(0.1)

Mixup
(0.5)

Mixup
(1.0)

Mixup
(DT)

Mixup
(TO)

Mixup
(SC)

Mixup
(IO)

MIT-A
∆λ> 1

2

MIT-L
(∆λ>1

2
)

MIT-A
(∆λ>1

2
)

SVHN
ResNet18 0.61 (1) 0.88 (7) 1.10 (10) 4.34 (11) 0.92 (9) 0.72 (4) 0.76 (6) 0.67 (2) 0.90 (8) 0.73 (5) 0.70 (3)
ResNet50 0.77 (10) 0.71 (6) 0.68 (3) 0.97 (11) 0.71 (5) 0.75 (8) 0.66 (2) 0.77 (9) 0.63 (1) 0.74 (7) 0.70 (4)

CIFAR-10
ResNet18 0.56 (3) 0.63 (6) 2.11 (11) 0.85 (10) 0.80 (9) 0.78 (8) 0.50 (1) 0.65 (7) 0.62 (5) 0.51 (2) 0.56 (4)
ResNet50 0.74 (8) 0.59 (5) 2.00 (10) 6.14 (11) 0.77 (9) 0.71 (7) 0.65 (6) 0.52 (3) 0.55 (4) 0.50 (2) 0.49 (1)

CIFAR-100
ResNet18 1.29 (2) 1.47 (9) 1.31 (3) 1.36 (6) 1.35 (4) 2.31 (11) 1.46 (8) 1.48 (10) 1.07 (1) 1.38 (7) 1.35 (5)
ResNet50 1.02 (1) 1.40 (9) 1.31 (6) 1.38 (7) 1.46 (10) 1.39 (8) 1.25 (5) 1.24 (4) 1.11 (2) 1.16 (3) 1.51 (11)

(a) SVHN (b) CIFAR-10

(c) CIFAR-100 (d) Tiny-ImageNet

Figure B. The comparative results in terms of the Calibrated TECE with different choices of threshold τ on ResNet110.

consistent to that of ResNets. Table F shows the results of Histogram Binning (HB) and Beta Calibration (BC). It is shown
that mixup’s issue can also be mitigated by our methods in these cases.

4.2. Comparison with other Calibration Methods

In this subsection, we compare our approaches with three commonly considered calibration baselines Brier loss [1],
label smoothing [8], Focal loss [7], as well as two specifically designed calibration loss Maximum Mean Calibration Error
(MMCE) [5] and Difference between Confidence and Accuracy (DCA) [6]. We briefly introduce these methods as follows:

• Brier loss is the simple the mean squared error between the predicted confidences and the ground-truth one-hot labels,
which was considered as an important baseline as it can be decomposed into calibration and refinement [1].



Table G. The comparison with other methods on calibrated ECE, NLL, ACE, AdaECE and TECE (with ResNet18).

Methods
SVHN CIFAR-10 CIFAR-100

Acc ECE ACE NLL AdaECE TECE Acc ECE ACE NLL AdaECE TECE Acc ECE ACE NLL AdaECE TECE

ERM 95.4 0.50 5.74 0.16 0.70 0.37 94.5 0.65 4.81 0.17 0.73 0.49 74.4 2.56 3.46 0.97 2.54 1.46

Brier 95.5 0.60 6.01 0.16 0.53 0.45 94.3 1.06 5.07 0.19 1.10 0.86 74.4 3.30 4.44 1.00 3.16 1.45
LS (ϵ = 0.01) 95.7 0.78 6.47 0.16 1.40 0.70 94.5 1.35 5.59 0.19 2.30 1.31 73.7 2.92 4.13 1.08 2.77 1.52
LS (ϵ = 0.05) 95.6 0.93 5.64 0.17 1.68 0.84 94.7 1.39 5.97 0.20 2.78 1.21 75.5 3.52 4.92 1.06 3.55 1.24
LS (ϵ = 0.1) 95.8 0.85 5.52 0.16 1.53 0.73 94.7 1.39 5.64 0.21 2.87 1.21 76.1 3.38 6.10 1.04 3.52 1.27

Focal Loss (γ = 1.0) 95.6 0.44 4.75 0.16 0.92 0.37 94.3 0.97 4.04 0.18 0.84 0.72 73.9 1.82 2.29 0.94 1.71 1.25
Focal Loss (γ = 2.0) 95.6 0.57 7.72 0.16 0.76 0.43 94.4 0.89 5.42 0.17 1.14 0.75 74.1 1.26 1.88 0.92 1.05 0.73
Focal Loss (γ = 3.0) 95.6 0.69 6.79 0.16 0.75 0.59 93.7 1.23 5.84 0.19 1.46 1.02 74.0 1.04 3.66 0.91 0.98 0.75

MMCE (β = 0.1) 95.5 0.67 5.38 0.16 0.75 0.45 94.4 0.63 7.28 0.17 0.50 0.44 73.8 2.59 3.84 0.99 2.49 1.56
MMCE (β = 0.5) 95.1 1.15 6.44 0.18 0.99 0.78 94.2 1.05 8.62 0.19 0.94 0.63 72.2 2.04 2.95 1.03 1.97 1.30
MMCE (β = 1.0) 94.9 1.41 8.21 0.21 1.44 0.92 94.0 3.29 13.6 0.26 2.86 1.14 71.7 1.80 2.52 1.05 1.81 1.29

DCA (η = 0.1) 95.1 0.50 5.60 0.17 0.87 0.33 94.5 0.87 5.57 0.17 0.59 0.71 74.5 2.72 3.65 0.97 2.65 1.64
DCA (η = 0.5) 95.5 0.66 5.20 0.16 0.76 0.43 94.4 0.66 4.75 0.17 0.65 0.49 73.6 2.93 4.56 1.01 2.79 1.58
DCA (η = 1.0) 95.5 0.62 5.44 0.16 0.73 0.49 94.5 0.71 6.46 0.18 0.57 0.55 73.3 2.83 4.07 1.01 2.90 1.66

MIT-A 95.0 0.47 5.00 0.18 0.60 0.37 95.5 0.56 6.02 0.13 0.46 0.43 76.2 1.44 2.29 0.84 1.40 1.02

Table H. The comparison with other methods on calibrated ECE, NLL, ACE, AdaECE and TECE (with ResNet110).

Methods
SVHN CIFAR-10 CIFAR-100

Acc ECE ACE NLL AdaECE TECE Acc ECE ACE NLL AdaECE TECE Acc ECE ACE NLL AdaECE TECE

ERM 96.0 0.75 6.77 0.15 1.03 0.65 94.7 0.83 6.72 0.17 0.81 0.66 76.1 2.64 3.61 0.89 2.58 1.37

Brier 95.8 1.08 14.8 0.18 1.58 1.04 94.4 0.72 5.13 0.18 0.71 0.56 73.1 2.75 5.44 1.03 2.78 1.54
LS (ϵ = 0.01) 96.1 1.10 9.94 0.16 1.85 1.03 94.7 1.31 6.26 0.22 2.79 1.19 76.1 2.61 4.16 0.99 2.55 1.37
LS (ϵ = 0.05) 95.8 1.30 7.03 0.19 2.30 1.29 94.8 1.43 13.0 0.23 2.95 1.28 75.7 3.32 5.33 1.07 3.58 2.14
LS (ϵ = 0.1) 95.9 1.27 5.88 0.19 2.19 1.16 94.9 1.28 22.0 0.23 2.97 1.20 76.7 3.38 5.42 1.07 4.25 3.07

Focal Loss (γ = 1.0) 95.9 0.84 4.15 0.15 1.07 0.76 94.6 0.71 6.94 0.17 0.77 0.62 76.1 1.50 2.47 0.85 1.49 0.84
Focal Loss (γ = 2.0) 96.0 0.98 5.71 0.15 1.43 0.86 94.2 1.03 5.52 0.18 1.15 0.91 75.8 0.92 1.87 0.85 1.01 0.69
Focal Loss (γ = 3.0) 96.0 0.98 4.56 0.15 1.49 0.93 93.8 1.22 5.04 0.19 1.32 1.07 76.0 1.24 1.83 0.84 1.05 1.04

MMCE (β = 0.1) 95.9 0.63 4.50 0.15 0.96 0.55 94.7 0.59 6.36 0.16 0.51 0.40 74.7 2.36 4.23 0.94 2.24 1.25
MMCE (β = 0.5) 95.8 1.37 14.5 0.18 1.54 0.38 94.6 1.67 12.5 0.19 1.73 0.38 75.0 1.91 2.72 0.91 1.93 1.30
MMCE (β = 1.0) 95.8 1.72 16.3 0.19 1.60 0.42 93.3 4.17 15.5 0.28 2.99 0.73 74.6 1.96 5.05 0.92 1.68 1.16

DCA (η = 0.1) 96.1 0.79 6.55 0.15 1.02 0.71 95.0 0.71 5.00 0.16 0.58 0.55 75.9 2.63 3.64 0.90 2.71 1.21
DCA (η = 0.5) 96.0 0.86 3.53 0.15 1.06 0.78 94.7 0.58 4.51 0.17 0.75 0.52 76.0 2.38 3.60 0.89 2.34 1.18
DCA (η = 1.0) 95.9 0.86 4.98 0.15 0.89 0.74 94.8 0.66 5.27 0.17 0.61 0.53 76.0 2.65 3.61 0.89 2.45 1.31

MIT-A 96.5 0.48 6.29 0.13 0.69 0.40 96.1 0.52 8.18 0.12 0.45 0.40 78.7 1.98 3.30 0.76 1.84 1.00

• Label smoothing (LS) is widely used to reduce overfitting of DNNs [8]. The mechanism of LS is simple: when training
with CE loss, the one-hot label vector y is replaced with soft label vector ỹ, whose elements can be formally denoted
as ỹi = (1− ϵ)yi + ϵ/K,∀i ∈ {1, ...,K}, where ϵ > 0 is a strength coefficient.

• Focal loss is originally proposed to address the class imbalance problem in object detection. Formally, for classification
tasks where the target distribution is one-hot encoding, it is defined as: Lf = −(1−fθ

y )
γ log fθ

y , where γ is a predefined
coefficient. Mukhoti et al. [7] found that the models learned by focal loss produce output probabilities which are already
very well calibrated.

• MMCE is a continuous and differentiable proxy for calibration error and is normally used as a regularizer alongside the
commonly used cross-entropy loss, where a weighting factor β could be used to balance the contribution of MMCE [5].

• DCA directly computes the absolute difference between the average confidence and accuracy of training data. It can
be also used as an auxiliary loss term alongside the cross-entropy and weighted by a factor η [6].

Table G and H show the results of the above comparison methods with different hyperparameters. We can observe similar
phenomenon with the comparison between our approaches with mixup and its variants: These methods improve calibration
on raw outputs compared with ERM, but often degrade the calibration performance after post-hoc processing. We think this



may be also caused by the confidence penalty effect implicitly induced by these methods. On the contrary, our approaches
do not penalize the confidence in training and hence yield bad calibration on the raw outputs, while achieving impressive
calibration performance after post-calibration.

(a) SVHN (b) CIFAR-10 (c) CIFAR-100 (d) Tiny-ImageNet

(e) SVHN (f) CIFAR-10 (g) CIFAR-100 (h) Tiny-ImageNet

(i) SVHN (j) CIFAR-10 (k) CIFAR-100 (l) Tiny-ImageNet

Figure C. The results of MIT-A on Calibrated ECE, Calibrated NLL and Accuracy with different α on ResNet18 and ResNet110.

4.3. Impact of the Hyperparameter

We also conduct the empirical study on the mixing factor α. Figure C shows the results of MIT-A with α ∈ {0.1, 0.2, 0.3,
..., 1.4}. It is illustrated that the calibrated ECE and NLL are not sensitive to the choice of α: MIT-A outperforms vanilla
mixup in all cases except for the results on CIFAR-100 with ResNet18 (see in Figure C(c)). Moreover, in terms of the ac-
curacy, the performance of our approach is also stable, while can be further improved by specifically selecting an α. For exam-
ple, compared with our default setting (α=1 used in the main experiments), on SVHN/CIFAR-100 with ResNet18/ResNet110,
nearly 1%/1.5% improvement of accuracy can be achieved by choosing a relatively smaller α.

4.4. Results with other Settings
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