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1. Supplementary Material

Our supplementary material consists of the following:
Sec. 2 provides the details of our model architecture, train-
ing process and dataset curation. Sec. 3 describes the base-
lines we compare with. Sec. 4 shows the details of training
the task classifier in the first learning stage. We talk about
another different evaluation protocol used by previous ap-
proach [13] and present the performance of our model with
this protocol in Sec. 5. Then in Sec. 6, we study how batch
size affects the value of mIoU metric and show the results
of evaluating mIoU with different batch size on the same
model. In Sec. 7, we discuss the importance of introducing
prior knowledge that the start/end observations are more re-
lated to the first/last actions to our model. Finally, we pro-
vide more results, details and visualizations about the abil-
ity to model uncertainty of our approach in Sec. 8.

2. Implementation Details

2.1. Details of model architecture

The maintain of our model is the learnable model fθ,
which we implement as a basic 3-layer U-Net [10]. As
in [7], each layer in our model consists of two residual
blocks [6] and one downsample or upsample operation. One
residual block consists of two convolutions, each followed
by a group norm [15] and Mish activation function [9].
Time embedding is produced by a fully-connected layer
and added to the output of first convolution. We apply
a 1d-convolution along the planning horizon dimension as
the downsample/upsample operation. Considering that the
value of planning horizon is small (T = {3, 4, 5, 6}), we set
the kernel size of 1d-convolution as 2, stride as 1, padding
as 0 so the length change of planning horizon dimension
keeps 1 after each downsample or upsample.

The input for our model is the concatenation of task
class, actions labels and observation features, so the size of
feature dimension is dim = Lc +La +Lo. Here Lc means
the number of task classes in the dataset, La is the number
of different actions in the dataset and Lo is the length of

visual features. Our model embeds the input feature with
shape [dim → 256 → 512 → 1024] in the downsample
process and recover to the initial size in the upsample pro-
cess as [1024 → 512 → 256 → dim].

For diffusion, we use the cosine noise schedule to pro-
duce the hyper-parameters {βn}Nn=1, which denote the ratio
of Gaussian noise added to the data at each diffusion step.

2.2. Dataset curation details

Each video in the dataset is annotated with action labels
and temporal boundaries. That is, the start time and end
time of each action in an instructional video are annotated
as {si, ei}numi=1 , where si and ei denote the start and end
time of the ith action, num denotes the number of actions
in the video. We in this paper follow previous work [1,
2] to extract all action sequences with predicting horizon
T {[ai, ..., ai+T−1]}num−T+1

i=1 from the given video which
contains num actions by sliding a window of size T . Thus
each action sequence we need to predict can be presented as
{ai, ai+1, ..., ai+T−1}. We choose the video clip feature at
the beginning time of action ai and clip feature around the
end time of ai+T−1 as the start observation os and goal state
og , respectively. Specifically, we first round the start and
end time of this action sequence to get ⌊si⌋ and ⌈ei+T−1⌉.
Then we choose clip feature starts from ⌊si⌋ and clip feature
ends with ⌈ei+T−1⌉ as os, og , as shown in Fig. 1. Both clips
are 3 seconds long.

2.3. Details of training process

We train our model with a linear warm-up scheme. For
different datasets, the training scheme changes due to dif-
ferent scales. In CrossTaskBase, we set the diffusion step
as 200 and train our model for 12, 000 steps with learning
rate increasing linearly to 8× 10−4 in the first 4, 000 steps.
Then the learning rate decays to 4×10−4 at step 10, 000. In
CrossTaskHow, we keep diffusion step as 200 and train our
model for 24, 000 steps with learning rate increasing lin-
early to 5× 10−4 in the first 4, 000 steps and decays by 0.5
at step 10, 000, 16, 000 and 22, 000. In NIV, the diffusion
step is 50 and we train 6, 500 steps due to its small size. The
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Figure 1. Selection of observations with a given action sequence.

learning rate increases linearly to 3×10−4 in the first 4, 500
steps and decays by 0.5 at step 6, 000. The COIN dataset re-
quires much more training steps due to its large scale. We
set diffusion step as 200 and train our model for 160, 000
steps. The learning rate increases linearly to 1 × 10−5 in
the first 4, 000 steps and decays by 0.5 at step 14, 000 and
step 24, 000. Then we keep learning rate as 2.5× 10−6 for
the remaining training steps. The training batch size for all
experiments is 256. For the weighted loss in our training
process, we set w = 10. All our experiments are conducted
with ADAM [8] on 8 NVIDIA TITAN Xp GPUs.

3. Baselines

In this section, we introduce the baselines we used in our
paper.
- Random. This policy randomly selects actions from the
available action space in dataset to produce the plans.
- Retrieval-Based. Given the observations {os, og}, the
retrieval-based method retrieves the closest neighbor by cal-
culating the minimum visual feature distance in the train
dataset. Then the action sequence associated with the re-
trieved result will be used as the action plan.
- WLTDO [3]. This approach applies a recurrent neural
network(RNN) to predict action steps with the given obser-
vation pairs.
- UAAA [4]. UAAA is a two-stage approach which uses
RNN-HMM model to predict action steps autoregressively.
- UPN [12]. UPN is a physical-world path planning algo-
rithm and learns a plannable representation to make predic-
tions. To produce the discrete action steps, we follow [2] to
add a softmax layer to the output of this model.
- DDN [2]. DDN model is a two-branch autoregressive
model, which learns an abstract representation of action
steps and tries to predict the state-action transition in the
feature space.
- PlaTe [13]. PlaTe model follows DDN and uses trans-
former modules in two-branch to predict instead. Note that
the evaluation protocol of PlaTe is different with other mod-
els, so we move the comparison with PlaTe to supplemen-
tary material, which we will discuss later.
- Ext-GAIL [1]. This model solves the procedure plan-
ning problem by reinforcement learning techniques. Simi-
lar to our work, Ext-GAIL decomposes the procedure plan-
ning problem into two sub-problems. However, the purpose

of the first sub-problem in Ext-GAIL is to provide long-
horizon information for the second stage while our purpose
is to get condition for sampling.
- P 3IV [16]. P3IV is a single-branch transformer-based
model which augments itself with a learnable memory bank
and an extra generative adversarial framework. Like our
model, P3IV predicts all action steps at once during infer-
ence process.

4. Details of the first learning stage
In the first learning stage, we need to predict the task

class with the given observations {os, og}. We use a sim-
ple 4-layer MLP model to achieve this and calculate the
cross entropy loss for the output of the model and the
ground truth task class label to train our model, except for
CrossTaskBase. A two-layer Res-MLP [14] trained with
MSE loss is applied to CrossTaskBase, which can get a bet-
ter result when T = 3. The task classification results in
the first learning stage for different models with different
training losses on CrossTaskBase are shown in Tab. 1.

Choices T = 3 T=4 T=5 T=6
MLP+Crossentropy 81.94 82.61 83.14 84.08

ResMLP+Crossentropy 81.6 82.47 82.77 82.83
ResMLP+MSEloss 94.38 83.64 83.37 83.85

Table 1. Task classification results in the first stage with different
training choices for CrossTaskBase.

5. Evaluation with another evaluation protocol
As talked in Sec. 3, PlaTe [13] used another protocol for

evaluation. P3IV [16] later evaluated SR with this protocol
to compare with PlaTe. We name this as ”protocol 2”. In
all experiments of the main paper, we follow previous work
[1,2,16] to use a 70%/30% split for training/testing and rely
on a sliding window to get our learning data. In this section,
we evaluate our model with ”protocol 2” and compare our
performance with previous works that evaluated with this
protocol.

The main differences of ”protocol 2” are as followed: a)
”protocol 2” uses a 2390/360 split for train/test. b) ”proto-
col 2” randomly selects one procedure plan with prediction
horizon T in each video for training and testing, rather than
relying on a T -size sliding window to consider all proce-
dure plans in each video. c) Given the planning horizon T ,
”protocol 2” only predicts T − 1 actions.

We evaluate our model with ”protocol 2” on CrossTask
and compare the results with the previous best approach,
considering both short and long horizons. Specifically, we
use CrossTaskBase to compare with PlaTe for shorter hori-
zons and CrossTaskHow to compare with P3IV for longer
horizons. In this way we align the visual features used in
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Model T = 3 T=4 T=5 T=6
CrossTaskBase 81.71 83.63 84.65 84.53
CrossTaskHow 91.78 93.31 93.50 93.75

Table 2. Task classification results with protocol2.

Models T = 3 T = 4
SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑

PlaTe [13] 16.00 36.17 65.91 14.00 35.29 55.36
OursBase 33.61 50.83 49.86 24.17 51.48 54.33

Table 3. Evaluation results with protocol2 on CrossTask. Predic-
tion horizon set to T = {3, 4}. Note that we compute IoU on
every action sequence and take the mean as mIoU.

different approaches with our model to conduct a fair com-
parison. The task classification accuracy results for T =
{3, 4, 5, 6} with ”protocol 2” are provided in Tab. 2. Tab. 3
shows the results of our model with short horizons, and
Tab. 4 shows the results of SR metric with longer predic-
tion horizons. Note that we compute mIoU by calculating
the mean of every IoU for a single antion sequence rather
than a mini-batch. We can see that our method keeps the
top performance for all prediction horizons.

Models T = 3 T = 4 T = 5 T = 6
SR↑ SR↑ SR↑ SR↑

P3IV [16] 24.4 15.8 11.8 8.3
OursHow 53.06 35.28 21.39 13.33

Table 4. Evaluation results of SR with protocol 2 on CrossTask.
Prediction horizon set to T = {3, 4, 5, 6}.

6. Impact of batch size on mIoU
As we discussed in the main paper, previous approaches

calculate the IoU value on every mini-batch and take their
mean as the final mIoU. However, the batch size value for
different methods may be different, which results in an un-
fair comparison. In this section, we study the impact of
batch size on mIoU, which can illustrate the importance for
the standardization of computing mIoU.

We use our trained models to compute the mIoU met-
ric on CrossTask with different evaluation batch size. Plan-
ning horizon is set to {3, 4, 5, 6}. The results are shown in
Tab. 5, which validate our thought and show the huge im-
pact of batch size on mIoU. The value of mIoU evaluated
on the same model can vary widely as batch size changes,
so comparing mIoU with different evaluation batch size has
no meaning. To address this problem, we standardize the
way to compute mIoU as setting evaluation batch size to 1
at inference time.

Batch size T = 3 T=4 T=5 T=6

OursBase

1 58.95 56.99 56.32 57.51
32 68.03 67.14 67.10 70.48
64 71.46 69.64 67.39 69.31

128 71.01 67.26 64.53 63.19

OursHow

1 66.57 65.13 65.32 65.38
32 75.21 77.07 78.56 78.59
64 79.74 81.74 81.73 80.88

128 80.50 82.32 81.41 78.64

Table 5. Evaluation results of mIoU with different batch size on
CrossTask.

7. Role of prior knowledge
In this section, we study the role of leveraging a prior

knowledge that the start/end observations are more related
to the first/last actions for our model.

Inspired by [5], we establish a baseline not using this
prior knowledge by tiling the observations and task class
conditions to the output of the U-Net encoder before de-
coding. 1 × 1 convolution is applied to reduce the chan-
nel dimension of observation features and class conditions.
Then the features and conditions are replicate k times(k is
the horizon length of the U-Net encoder output) and con-
catenated along the channel dimension. We conduct exper-
iments on CrossTask and the results are shown in Tab. 6,
which demonstrates that the introduced prior knowledge is
quite useful to the learning process with visual features pro-
vided by CrossTask(OursBase), while not good when better
visual features are provided(OursHow).

T=3 T=4
SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑

TileBase 23.40 50.37 55.14 14.13 45.80 55.03
OursBase 26.47 55.35 58.59 15.40 49.42 56.99
TileHow 36.21 65.12 66.79 22.31 59.00 66.20
OursHow 37.20 64.67 66.57 21.48 57.82 65.13

Table 6. Ablation study on the role of prior knowledge.

8. Additional study on modeling uncertainty
In the main paper, we study the probabilistic modeling

ability of our model on CrossTaskHow and show that our
diffusion based model can produce both diverse and accu-
rate plans. Here we provide more details, results and visual-
izations about modeling the uncertainty in procedure plan-
ning by our model.

Details of evaluating uncertainty modeling. For the De-
terministic baseline, we just sample once to get the plan
since the result for Deterministic is certain when observa-
tions and task class conditions are given. For the Noise
baseline and our diffusion based model, we sample 1500
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T=3 T=4

KL-Div↓ NLL↓ KL-Div↓ NLL↓
Deterministic 5.40 5.49 5.13 5.26

Noise 4.92 5.00 5.04 5.17

Ours 4.85 4.93 4.62 4.75

Table 7. Evaluation results of the plan distributions metrics on
NIV.

T=3 T=4

SR↑ Prec↑ Rec↑ SR↑ Prec↑ Rec↑
Deterministic 27.94 29.63 27.44 25.43 26.64 24.08

Noise 25.73 26.87 38.37 22.84 23.05 31.89

Ours 31.25 31.78 33.09 26.72 29.10 33.08

Table 8. Evaluation results of diversity and accuracy metrics on
NIV.

action sequences as our probabilistic result to calculate the
uncertain metrics. Furthermore, in order to efficiently com-
plete the process of 1500 sampling, we apply the DDIM
[11] sampling method to our model, with which one sam-
pling process can be completed with 10 steps(accelerating
the sampling for CrossTask and COIN by 20 times and NIV
by 5 times). Note that the multiple sampling process is
only required while evaluating probabilistic modeling and
our model can generate a good plan just by sampling once.

Uncertainty modeling results on other datasets.
We here provide the uncertainty modeling results on
NIV(Tab. 7,Tab. 8) and COIN(Tab. 9,Tab. 10). Different
with CrossTask, we here find the diffusion process still
helps for NIV, but harms the performance on COIN. We
suspect the reason for this is that data scales and variability
in goal-conditioned plans of these datasets are different.
To verify our thought, we calculate the average number
of distinct plans with the same start and goal observations
in these datasets, as in [16]. The results in Tab. 11 show
that the variability in CrossTask is the much larger than the
other two datasets. And longer horizons can bring more
diverse plans for all datasets. Thus our diffusion based
approach performs best on CrossTask with longer horizons
T = 4, 5, 6. For NIV, we hypothesize that our model can
fit this small dataset well thus adding noises to the learning
does not harm the accurancy of planning much. With our
diffusion based method, the model makes a good trade-off
between the diversity and accuracy of planning, resulting
in the best results. However, for the large COIN dataset,
our model can not fit it really well and introducing noises
to our model just makes the learning harder.

T=3 T=4

KL-Div↓ NLL↓ KL-Div↓ NLL↓
Deterministic 4.52 5.46 4.43 5.84

Noise 4.55 5.50 4.52 5.92

Ours 4.76 5.71 4.62 6.03

Table 9. Evaluation results of the plan distributions metrics on
COIN.

T=3 T=4

SR↑ Prec↑ Rec↑ SR↑ Prec↑ Rec↑
Deterministic 27.96 34.35 27.40 19.98 30.65 19.63

Noise 18.49 25.67 29.82 12.58 22.25 19.32

Ours 21.33 28.03 23.49 14.41 24.83 16.28

Table 10. Evaluation results of diversity and accuracy metrics on
COIN.

Datasets T=3 T=4 T=5 T=6

CrossTask 4.02 7.82 10.92 11.51
NIV 1.31 1.50 - -

COIN 1.74 2.52 - -

Table 11. Average number of paths with the same start and goal
states across multiple horizons and datasets.

Visualizations for uncertainty modeling. In Figures Fig. 2
to Fig. 5, we show the visualizations of different plans with
the same start and goal observations proceduced by our dif-
fusion based model CrossTaskHow for different prediction
horizons. In each figure, the images denote the start and
goal observations, the first row denotes the ground truth
actions(rows with ”GT”), the last row denotes a failure
plan(rows with ”Failure”) and the middle rows denote mul-
tiple reasonable plans produced by our model, respectively.
Here the reasonable plans are plans that share the same start
and end actions with the ground truth plan and exist in the
test dataset.
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pour jello powder stir mixture pour alcohol

pour jello powder pour water pour alcohol

pour jello powder pour alcoholpour alcohol

pour jello powder stir mixture pour alcoholGT

pour jello powder pour water stir mixtureFailure

Figure 2. Visualization of diverse plans produced by our model with horizon T = 3.

pour water add sugar

pour lemon juice stir mixture pour waterGT

Failure

stir mixture

pour lemon juice stir mixture pour water stir mixture

pour lemon juice stir mixture

add sugarpour lemon juice stir mixturestir mixture

pour water add icepour lemon juice stir mixture

Figure 3. Visualization of diverse plans produced by our model with horizon T = 4.
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pour milk whisk mixture add flourGT

Failure

whisk mixture pour mixture into pan

pour milk whisk mixture pour mixture into panwhisk mixture

pour milk whisk mixture whisk mixture pour mixture into panpour milk

pour milk whisk mixture add flour whisk mixture pour mixture into pan

add flour

whisk mixture pour egg pour milk whisk mixture pour mixture into pan

Figure 4. Visualization of diverse plans produced by our model with horizon T = 5.

season steak put steak on grill close lidGT

Failure

open lid flip steak open lid

season steak put steak on grill close lid open lid open lidclose lid

season steak put steak on grill close lid open lid flip steak open lid

season steak put steak on grill close lid open lidclose lidflip steak

season steak put steak on grill flip steak close lid close lidopen lid

Figure 5. Visualization of diverse plans produced by our model with horizon T = 6.
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