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In these supplementary materials, we first provide
a derivation for incorporating positional encoding into
tri-planes. We then provide ablation studies for geometric
initialization, frequency bands, other architectures, and
EMD evaluation. We also show the details of self-attention
convolution and the multi-scale architecture we compared
to. Furthermore, we conduct experiments and show some
examples of other real-world scenes. We finally show more
qualitative comparisons to supplement the main text.

A. Derivations for Positional Encoding Tri-
Planes

In this section, we derive Eq. 13 in the main text to in-
corporate positional encodings into tri-planes. Recall the
3D function f (x, y, z) can be expanded as follows.
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where m, n, and k are the different frequencies for x, y, z
with maximum number of scales M,N,K 7→ ∞ and
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The idea is to use cos(tv) and sin(tv) to represent
the function f (x, y, z). We first expand Θx

m to represent
f (x, y, z) into the form of cos (mx) and sin (mx) as fol-

lows.
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There are three terms in the equation. The first and sec-
ond terms can be rewritten as a combination of cos (mx)
and sin (mx) as follows.
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We define ĝm(y, z) =
K∑

k=−K

N∑
n=−N

amnkΘ
y
nΘ

z
k and
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However, cos (mx) and sin (mx) do not appear in the
third term. We therefore would like to find some other way
to express the third term using trigonometric functions. We
observe that we can alternately expand the other two terms
Θy

n and Θz
k in f (x, y, z) of Eq. 3 in the same way and add

them together as follows.
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We further expend Eq. 17 as follows.
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Similarly, we can expand Eq. 20, and Eq. 23.

K∑
k=−K

M∑
m=−M

(am0k)Θ
x
mΘz

k (52)

=

K∑
k=1

(
M∑

m=−M

am0kΘ
x
m

)
cos (kz) (53)

+

K∑
k=1

(
M∑

m=−M

am0(−k)Θ
x
m

)
sin (kz) (54)

+

M∑
m=−M

(am00)Θ
x
m (55)

and

N∑
k=−N

M∑
n=−M

(amn0)Θ
x
mΘy

n (56)

=

M∑
m=1

(
N∑

n=−N

amn0Θ
y
n

)
cos (mx) (57)

+

M∑
m=1

(
N∑

n=−N

a(−m)n0Θ
y
n

)
sin (mx) (58)

+

N∑
n=−N

(a0n0)Θ
y
n (59)



Therefore the function can be rewritten as follows.
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ĝm(y, z) +

N∑
n=−N

amn0Θ
y
n

)
cos (mx) (60)

+

M∑
m=1

(
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Now we ignore the constant coefficient 3 and the func-
tion f can be rewritten by the combination of positional en-
coding, which can be learned by an MLP network as fol-
lows.
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B. Additional Ablations

B.1. Geometric Initialization

In this section, we provide an ablation study for geomet-
ric initialization. We compare our geometric initialization
method (Our Geo Init) with two different settings. The first
one is to initialize tri-planes from random noise and the 3-
layer MLP with standard geometric initialization [1] (MLP
Geo Init). The random noise is from a normal distribu-
tion N (0, 1). In the second setting, the standard geometric
initialization is not used during the initialization stage (No
Geo Init). We show a representative example in Fig. 6 to
compare the difference. We can observe that the method
without geometry initialization causes the foreground and
background to stick together and inconsistent reconstruc-
tion results on the belly. Using random noise to initialize
tri-planes and standard geometric initialization to initialize
MLP results in high-frequency details that are artifacts on
the generated surface model. We also show a comparison
of chamfer distance in Tab. 4. We run three times for each
setting and take the average as a metric to evaluate the dif-
ferent initialization methods. Our geometric initialization
leads to more consistent surface reconstruction results.

Table 4. Ablations for geometric initialization.

Method 1 2 3 Mean

No Geo Init 1.86 1.79 1.92 1.86
MLP Geo Init 1.39 1.29 1.33 1.34
Our Geo Init 1.04 1.03 1.09 1.05



Figure 6. Qualitative evaluation for geometric initialization. First column: reference images. Second to the fourth column: no geometric
initialization, geometric initialization for MLP, and our geometric initialization.

Table 5. Additional ablations and EMD evaluation on DTU.

Method 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

+ MSA + SAC (2+2 FB) 0.72 0.89 1.05 0.38 0.92 0.86 0.81 1.40 1.17 0.78 0.60 1.55 0.41 0.55 0.50 0.84
+ MSA + MPE (4FB) 0.98 0.86 0.82 0.38 0.90 0.82 0.74 1.36 1.16 0.75 0.55 1.61 0.35 0.53 0.50 0.82

+ SAC + MPE (2FB) 0.59 0.78 0.70 0.36 0.89 0.80 0.75 1.35 1.12 0.68 0.53 1.10 0.34 0.51 0.50 0.73
+ SAC + MPE (4FB) 0.56 0.75 0.68 0.36 0.87 0.76 0.69 1.33 1.08 0.66 0.51 1.04 0.34 0.51 0.48 0.71
+ SAC + MPE (6FB) 0.64 0.76 0.71 0.36 0.87 0.83 0.76 1.36 1.13 0.67 0.54 1.07 0.34 0.52 0.51 0.74

Earth Mover Distance (EMD) evaluation on DTU

NeuS 1.03 1.08 0.85 0.96 1.22 0.80 0.84 0.98 1.01 0.88 0.71 0.87 0.75 0.80 0.82 0.91
Ours 0.87 0.92 0.71 0.93 1.01 0.85 0.85 0.95 1.02 0.84 0.70 0.82 0.74 0.80 0.81 0.85

B.2. Frequency Bands

We conduct an ablation study to investigate the impact
of different frequency bands. Tab. 5 provides Chamfer dis-
tance results for 2, 4, and 6 frequency bands with the win-
dow sizes of {8}, {4,8,16}, and {1,2,4,8,16}, respectively.
Four frequency bands performed the best in our experi-
ments.

B.3. Other Combination of Architectures

We run the experiment for MSA+SAC and MSA+MPE
and report the results in Tab. 5. To construct four fre-
quency bands (4FB) for MSA+SAC, we use two-resolution
triplanes for MSA and apply two-frequency-band SAC
on each tri-plane. Compared with SAC+MPE (4FB) in
Tab. 5, SAC+MPE method is superior to MSA+SAC and
MSA+MPE.

B.4. EMD evaluation

We follow the very recent SotA methods (e.g., NeuS,
VolSDF, IDR), which use only Chamfer distance to eval-
uate the surface quality. For additional EMD evaluation, we
compare our method with NeuS and provide the results in
Tab. 5. For each method, we evenly sampled 10K points on

the reconstructed surface to obtain the point cloud. The re-
sults are consistent with Chamfer distance, and our method
outperforms NeuS on DTU by 7% on average.

C. Method Details

C.1. Multi-Scale Architecture

Here, we discuss the details of the multi-scale architec-
ture we compared to in the main text. One general strategy
to achieve multi-scale behavior is to use a multi-resolution
data structure. Therefore, it was our idea to use tri-planes
with different resolutions. We use Tri-planes with four dif-
ferent resolutions in the multi-scale architecture to mimic
four frequency bands in the SAC (self-attention convolu-
tion) structure for a fair comparison. For the highest resolu-
tion tri-plane representing high frequency, we used the same
resolution as SAC, i.e. 512 dimensions. However, for the
low-frequency tri-planes, we use three different tri-planes
with different resolutions, namely 256×256, 128×128, and
64×64. We then concatenate features generated by these
tri-planes to obtain multi-scale tri-plane features. We show
the results in Table 3 in the main text and find that our results
using the self-attention convolution outperform the results
using the multi-scale architecture. An intuitive explanation
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Figure 7. Self-Attention Convolution for a window size k = 3.

is that the smoothing kernel can deal with the influence of
noise more effectively.

C.2. Self-Attention Convolution

We use the vanilla SAC mechanism from [2] and its de-
tailed diagram is provided in Fig. 7. Larger window sizes
represent lower frequency and smaller window sizes rep-
resent higher frequency. These window sizes are used as
different kernels in the self-attention convolution and the
corresponding convolved features are produced. Adding the
original tri-plane features, we can get four triplane features
with frequencies as our output feature maps.

D. Other Real-world Examples
We conduct an experiment on another real-world dataset

namely CO3D [3]. This dataset provides data for real-world
scenes. Many scenes are captured with portable devices
and camera poses are extracted using COLMAP [4]. 3D
reconstruction methods from datasets with this acquisition
method are more general, but also introduce greater noise
and challenges. We select some representative examples
(bench, bicycle, and hydrant) and show the comparison with
NeuS [5] on these examples in Fig. 8. Experimental results
show that our method can reconstruct detailed features, such
as the net structure of a bench, the rear wheel of a bicycle,
and the rivets of a fire hydrant.

E. Additional Qualitative Comparisons
In this section, we provide more qualitative comparisons

with NeuS [5] and HF-NeuS [6] for surfaces and images on
the NeRF synthetic dataset (Fig. 9 and Fig. 10) and the DTU
dataset (Fig. 11 and Fig. 12).
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Figure 8. Qualitative evaluation on CO3D dataset. First column: reference images. Second to the third column: NeuS and PET-NeuS.



Figure 9. Qualitative evaluation on the NeRF synthetic dataset. First column: reference images. Second to the fourth column: NeuS,
HF-NeuS, and PET-NeuS.



Figure 10. Qualitative evaluation on NeRF synthetic dataset. First column: reference images. Second to the fourth column: the generated
images from NeuS, HF-NeuS, and PET-NeuS.



Figure 11. Qualitative evaluation on DTU dataset. First column: reference images. Second to the fourth column: NeuS, HF-NeuS, and
PET-NeuS.



Figure 12. Qualitative evaluation on DTU dataset. First column: reference images. Second to the fourth column: the generated images
from NeuS, HF-NeuS, and PET-NeuS.
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