
PlaneDepth: Self-supervised Depth Estimation via Orthogonal Planes

Supplementary Material

A. Introduction

We first provide additional details of our method in Ap-
pendix B, specifically regarding the resizing cropping trans-
formation and the self-distillation loss. Furthermore, we
provide implementation details in Appendix C. Addition-
ally, we report more experimental results and examine the
influence of different training strategies in Appendix D.

B. Additional Method Details

B.1. Resizing Cropping Transformation

Resizing and cropping data augmentation is expected to
only modify the camera intrinsics while keeping the world
coordinates unchanged. However, the networks must pre-
dict the depth and relative pose of the original images for
all augmented inputs, which results in the disruption of a
crucial monocular cue - the closer an object is, the lager its
relative size [1]. We therefore assume that all input images
are captured by the same camera system, and discuss the
effect of the resizing cropping augmentation on the world
coordinates.

Cropped at (𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦) with scale factor 𝑓𝑓𝑠𝑠 Resized to the same resolution
Figure 1. Image is cropped at coordinates (px, py) using a scale
factor of fs, and then resized to the original resolution.

Given the center pixel coordinates Pc = (px, py) and the
cropping scale factor fs, the pixel coordinates P = (x, y)
and depth D of the original image after resizing and crop-
ping are modified as follows:

P̃ =
P−Pc

fs
+

S

2
D̃ = fsD, (1)

where S = (W,H) is the size of the image. The adjustment
in depth is based on the assumption that when the relative
size of an object increases by a factor of fs, its depth de-
creases by the same factor, fs.

Hence, the rectified coordinates w̃ obtained from aug-
mented images and the original world coordinates w can be
expressed as:

w̃ = D̃K−1

x̃ỹ
1

 w = DK−1

xy
1

 . (2)

The transformation RC of world coordinates from w to

w̃ is given by:

w̃ = RCw RC =

1
cx−px

fx

1
cy−py

fy

fs

 , (3)

where (fx, fy) represents the focal length and (cx, cy) de-
notes the principal point of the camera.

Given the equations of the transformed plane and the
original plane:

ñTRCw − δ̃ = 0 nTw − δ = 0, (4)

the rectified normal ñ and distance δ̃ can be computed as:

ñ =
RC

−T

||RC
−Tn||

n δ̃ =
δ

||RC
−Tn||

. (5)

Therefore, given the original vertical plane normal nv =
[0 0 1]T and ground plane normal ng = [0 1 0]T , the recti-
fied vertical plane normal ñv and ground plane normal ñg

are:

ñv =
RC

−Tnv

||RC
−Tn||

=

00
1

 (6)

ñg =
RC

−Tng

||RC
−Tn||

=
1√

1 + (
py−cy
fyfs

)2

 0
1

py−cy
fyfs

 . (7)

Consequently, the normal of the planes ñv and ñg after
transformation are no longer orthogonal.

Furthermore, two views which are resized and cropped
by the same parameters have the relationship as:

RCw
r = R̃RCw + t̃ wr = Rw + t, (8)

where R and t denote the rotation and translation, respec-
tively. Therefore, the modified relative pose can be ex-
pressed as:

R̃ = RCRRC
−1 t̃ = RCt (9)

B.2. Self-distillation Loss

Taking only the left view as input, we now provide the
details of filtering the loss of the occluded pixels in the right
view in self-distillation strategy.

Similar to [6], we obtain the right view occlusion mask
MR by using:

MR = min(

N−1∑
i=0

WL→R(πi, di), 1), (10)

where W(·, d) represents the warping function using dis-
parity d, and πi denotes the predicted Laplace weight of the
i-th plane. We define the occlusion-aware mixture Laplace
loss and perceptual loss as:

LM
MLL = MR ⊙ (− log

N−1∑
i=0

π̂ie
− 1

3
||Ir−Îi||1

σ̂i

2σ̂i
) (11)

LM
pc = ||ϕl(Ir)− ϕl(M

R ⊙ Îr + (1−MR)⊙ Ir)||22,
(12)

where π̂i, σ̂i, Îi are the weight, scale and image warped
by the i-th plane, respectively. Ir is the right view image,
Îr is the synthesised right view obtained by compositing Îi,
and ϕl is the first l maxpool layers of a VGG19 [11] model
pre-trained on the ImageNet [2].

Therefore, our final loss in the self-distillation stage is:

Ldistill = LM
MLL + λ1LM

pc + λ2Lds + λ3Lsd (13)

which is averaged over pixel, view and batch. λ1, λ2 and
λ3 are the weight hyper-parameters.

C. Implement Details
C.1. Training Details

We implement our network using PyTorch [9] and train
it using Adam [8] with β1 = 0.5, β2 = 0.999. Our de-
fault data augmentations consist of resizing using a random
scaling factor between 0.75 and 1.5, random cropping using
size 640 × 192, and random gamma, brightness and color
augmentations. In the first stage, we train our model with L
for 50 epochs using a batch size of 8, where half of input im-
ages are obtained by horizontal flipping the other half. Our
initialization learning rate is 1×10−4, which is halved at 30
and 40 epochs, respectively. We then fine-tune the network
with another epoch at high resolution (1280 × 384) with-
out resizing and cropping data augmentation. Subsequently,
we train another 10 epochs using the self-distillation loss
Ldistill with a batch size of 4 at high resolution, still with-
out resizing and cropping. or self-distillation, we use an
initialization learning rate of 2 × 10−5, which is halved at
5 epoch. We set the minimum and maximum disparity to
dmin = 2 and dmax = 300, and the minimum and maxi-
mum camera heights to hmin = 1 and hmax = 2. Addi-
tionally, we set the hyper-parameters of our loss function to
λ1 = 0.1, λ2 = 0.04, λ3 = 1.

C.2. Network Architecture

We adopt the U-Net [10] with DenseASPP [12] mod-
ule as the base network for depth estimation, as proposed
by Zhou and Dong [13]. To improve the accuracy of the
ground depth and segmentation, we further enhance our

PlaneDepth network by incorporating neural positional en-
coding (NPE). Similar to [4], we simply use the first five
blocks of ResNet50 [7] as the encoder, and the five up-
sampling blocks proposed in [4] as our decoder. Consis-
tent with [13], we insert a DenseASPP module [12] with
dilation rates of r ∈ {3, 6, 12, 18, 24} between the first two
blocks of the decoder. To assist the network in learning re-
sizing and cropping information, we encode grid g as an
8-channel feature map using NPE following [5], and con-
catenate it with the input of the first four decoder blocks.

For our pose estimation network, following Godard et
al. [4], we use the first five blocks of ResNet18 [7] with
double input channels as the encoder to extract two view
features. We then employ three convolution layers followed
by global average pooling for the decoder. Additionally, we
concatenate an 8-channel resizing and cropping feature with
the input of the decoder.

C.3. Evaluation Metrics

The metrics used for evaluation are defined as:

1. Abs Rel = 1
n

∑n
i=1

|D∗
i −Di|
D∗

2. Sq Rel = 1
n

∑n
i=1

(D∗
i −Di)

2

D∗

3. RMSE = (1n
∑n

i=1(D
∗
i −Di)

2)1/2

4. RMSE log = (1n
∑n

i=1(logD
∗
i − logDi)

2)1/2

5. At =
1
n |{Di|i ≤ n,max(Di

D∗
i
,
D∗

i

Di
) < 1.25t}|

6. MMP = 1
n

∑n
i=1(max

0≤j≤N−1
pj
/∑N−1

k=0 pk)

where D∗ and D represent the ground truth and the pre-
dicted depth map, respectively. pi denotes the probability
that the pixel belongs to the i-th plane.

D. Additional Experiments
D.1. Ablation of Training Strategy

Without any special data augmentation, the depth esti-
mation network will predict depth based solely on the ver-
tical image position cue [3]. Gonzalez and Kim [6] showed
that Resizing and cropping corrupt the vertical image posi-
tion of object, enabling the network to exploit the relative
object size cue. Furthermore, since disparity and relative
object size remain consistent, a network that predicts dis-
parity using the relative size cue can naturally adapt to in-
puts of various resolutions.

Since the vertical image position cue of outdoor scenes
is also closely related to depth, exploiting this cue can fur-
ther improve the performance. Taking advantage of the fact
that networks tend to learn the vertical image position, we
propose fine-tuning the network for an additional epoch at

Stage1 Stage1 Finetune Finetune LR performance HR performance
Resolution RC Resolution RC Abs Rel↓ Sq Rel↓ Rmse↓ A1↑ Abs Rel↓ Sq Rel↓ Rmse↓ A1↑

LR LR 0.103 0.748 4.631 0.878 0.461 5.342 8.675 0.414
HR HR 0.174 1.284 6.215 0.713 0.090 0.630 4.270 0.898
LR ✓ LR ✓ 0.100 0.708 4.588 0.882 0.090 0.616 4.188 0.898
LR ✓ HR 0.100 0.713 4.653 0.877 0.086 0.581 4.094 0.906

Table 1. Comparison of different training strategies in the first training stage and the fine-tune epoch. LR denotes low resolution (640×192),
HR represents high resolution (1280× 384), and RC indicates resizing and cropping data augmentation. The results show that exploiting
both monocular cues in our training strategy significantly improves performance.

LR HRInput

w/o RC

w/ RC

Figure 2. Visualization of the effect of resizing cropping. LR
and HR are low and high resolution, respectively. RC means train-
ing with resizing and cropping. The prediction results of inputs
with different resolutions are resized to the same resolution for
evaluation. Network trained using resizing and cropping can natu-
rally adjust to inputs with different resolutions.

high resolution without resizing and cropping at the end of
training. This fine-tuning step can further introduce vertical
image position cue and adapt the network to real images,
resulting a performance boost as shown in Tab. 1.

Table 1 shows that networks trained without resizing and
cropping are limited to performing only at the resolution of
the training data. However, networks trained using resiz-
ing and cropping augmentation perform well in both low
and high resolutions. Compared with training on HR all the
time, our strategy of training on LR and fine-tuning on HR
saves a lot of training time and performs better, indicating
that the performance improvement is due to the utilization
of both cues rather than the increase in training resolution.
Compared with training on LR with RC all the time, our
method learns the vertical image position cue at high res-
olution during fine-tuning. This improves performance at
HR but affects performance at LR since the vertical image
position cue is not universal across different resolutions.

D.2. Monocular Training Results

We conduct experiments with various monocular train-
ing settings and show results in Tab. 2. We find that
adding monocular supervision without considering appro-
priate measures significantly decreases performance. How-
ever, when using automask [4] and NPE, this negative im-
pact can be mitigated. When stereo supervision is not used,
our predefined planes are no longer in suitable positions due

Input Plane Segmentation

Figure 3. Visualization of regions modeled by different planes.
The ground is modeled by composing different ground planes,
which is necessary since the ground is not always an ideal hori-
zontal plane.

Train NPE AM Abs Rel↓ Sq Rel↓ Rmse↓ A1↑
S 0.089 0.598 4.175 0.900

MS ✓ 0.109 1.183 5.034 0.877
MS ✓ 0.093 0.599 4.203 0.891
MS ✓ ✓ 0.092 0.601 4.188 0.893
M ✓ ✓ 0.348 3.842 11.383 0.406

M† ✓ 0.113 1.049 4.943 0.859

Table 2. Comparison of different monocular training settings.
NPE refers to adding NPE as input to the pose network. AM is
automask proposed by [4]. S stands for stereo training using left
and right views with a fixed baseline. M denotes monocular train-
ing using front and rear frames without camera poses of the left
view as reference views. MS stands for both stereo and monocular
training. All depth networks use NPE inputs. †: We use the pre-
trained pose network provided by [4] to solve the scale ambiguity.

to the scale ambiguity, leading to training failure. To ad-
dress this issue, we try to use the pretrained pose network
provided by [4] for predicting poses with suitable scales and
achieve good performance. This result confirms the cor-
rectness of our resizing cropping transformation of camera
pose.

Input FALNet EPCDepth Ours

Figure 4. Additional qualitative results on the KITTI dataset. Our network predicts smoother depth for the ground while preserving
thin structures and sharp object edges with fewer depth artifacts.

References
[1] Juan Luis Gonzalez Bello, Jaeho Moon, and Munchurl

Kim. Positional information is all you need: A novel
pipeline for self-supervised svde from videos. arXiv preprint
arXiv:2205.08851, 2022. 1

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 2

[3] Tom van Dijk and Guido de Croon. How do neural networks

see depth in single images? In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 2183–
2191, 2019. 2

[4] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J Brostow. Digging into self-supervised monocular
depth estimation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 3828–3838,
2019. 2, 3

[5] Juan Luis Gonzalez and Munchurl Kim. Plade-net: To-
wards pixel-level accuracy for self-supervised single-view
depth estimation with neural positional encoding and dis-

tilled matting loss. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
6851–6860, 2021. 2

[6] Juan Luis GonzalezBello and Munchurl Kim. Forget about
the lidar: Self-supervised depth estimators with med proba-
bility volumes. Advances in Neural Information Processing
Systems, 33:12626–12637, 2020. 1, 2

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
2

[10] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 2

[11] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2

[12] Maoke Yang, Kun Yu, Chi Zhang, Zhiwei Li, and Kuiyuan
Yang. Denseaspp for semantic segmentation in street scenes.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3684–3692, 2018. 2

[13] Zhengming Zhou and Qiulei Dong. Learning occlusion-
aware coarse-to-fine depth map for self-supervised monoc-
ular depth estimation. arXiv preprint arXiv:2203.10925,
2022. 2

	. Introduction
	. Additional Method Details
	. Resizing Cropping Transformation
	. Self-distillation Loss

	. Implement Details
	. Training Details
	. Network Architecture
	. Evaluation Metrics

	. Additional Experiments
	. Ablation of Training Strategy
	. Monocular Training Results

