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Supplementary Material: Privacy-preserving Adversarial Facial Features

Abstract

In this supplementary file, more qualitative and quanti-
tative comparisons are provided to demonstrate the effec-
tiveness of the proposed AdvFace.Following the experimen-
tal evaluation in the main submission, more correspond-
ing examples in defense against privacy attacks, and trans-
ferability of AdvFace are visualized, respectively. Mean-
while, quantitative values are provided to further demon-
strate the outstanding trade-off of our method between de-
fending against reconstruction attacks and maintaining face
recognition accuracy.

A. Defense against Privacy Attacks
Figs. 1 2 3 show more reconstructed images from facial

features protected by different methods on datasets LFW
[1], CFP-FP [3], and AgeDB-30 [2] , respectively. As
shown in the third column, the reconstructed images from
the adversarial features generated by the proposed AdvFace
are hard to distinguish, while those protected by other meth-
ods (columns 4-6) undergo much information leakage about
the original images.

Figure 1. Reconstructed images from facial features generated by
different privacy protection methods on dataset LFW.

Figure 2. Reconstructed images from facial features generated by
different privacy protection methods on dataset CFP-FP.

Figure 3. Reconstructed images from facial features generated by
different privacy protection methods on dataset AgeDB-30.
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Table 1. Quantitative values of trade-off among SSIM, PSNR, MSE, and ACC for AdvFace with different noise bounds.

LFW CFP-FP AgeDB-30
ϵ SSIM↓ PSNR↓ MSE↑ ACC↑ SSIM↓ PSNR↓ MSE↑ ACC↑ SSIM↓ PSNR↓ MSE↑ ACC↑

0.00 0.90 26.33 0.002 97.80% 0.77 21.76 0.008 92.10% 0.83 22.56 0.006 86.78%
0.05 0.70 13.63 0.045 97.63% 0.59 14.47 0.038 91.90% 0.65 12.92 0.053 86.87%
0.10 0.50 10.30 0.096 97.47% 0.41 10.49 0.093 91.59% 0.44 9.13 0.127 86.22%
0.15 0.38 8.57 0.143 97.12% 0.31 7.88 0.168 91.24% 0.33 7.28 0.193 85.85%
0.20 0.28 6.98 0.206 96.43% 0.23 5.96 0.262 90.71% 0.24 5.85 0.269 85.10%
0.25 0.24 6.16 0.249 95.57% 0.19 4.97 0.328 89.81% 0.22 5.33 0.305 84.35%
0.30 0.22 5.71 0.275 93.55% 0.16 4.39 0.375 87.82% 0.20 4.91 0.334 82.42%

Table 2. The architecture of reconstruction networks.

TransRec
772 × 64

transconv3−64−−−−−−−−−−→ 792 × 64
transconv3−32−−−−−−−−−−→ 792 × 32

upsample−−−−−−→
1602 × 32

transconv3−32−−−−−−−−−−→ 1602 × 32
transconv3−3−−−−−−−−−→ 1602 × 3

Sigmoid−−−−−→
1602 × 3

ResRec

772 × 64
transconv3−64−−−−−−−−−−→ 772 × 64

IRBlock(64,2)−−−−−−−−−→ 772 × 64
upsample−−−−−−→

1202 × 64
IRBlock(64,2)−−−−−−−−−→ 1202 × 64

upsample−−−−−−→ 1602 × 64
conv1−3−−−−−→

1602 × 3
Sigmoid−−−−−→ 1602 × 3

URec

772 × 64
conv3−64−−−−−−→ 772 × 64

conv3−64−−−−−−→ 772 × 64
conv3−64−−−−−−→

772 × 64
upsample−−−−−−→ 1202 × 64

conv3−128−−−−−−−→ 1202 × 128
conv3−128−−−−−−−→

1202 × 128
conv3−128−−−−−−−→ 1202 × 128

upsample−−−−−−→ 1602 × 128
conv3−256−−−−−−−→

1602 × 256
conv3−256−−−−−−−→ 1602 × 256

conv3−256−−−−−−−→ 1602 × 256
conv3−3−−−−−→

1602 × 3
conv1−3−−−−−→ 1602 × 3

B. Transferability of AdvFace
As shown in the Table 2, we build three types of recon-

struction networks that can be employed by the attacker to
verify the Transferability of the method. In Figs. 4 5 6,
we show the facial images reconstructed from the adversar-
ial features under three different shadow models by three
different reconstruction networks. We can see that the de-
fense effectiveness of AdvFace is maintained under differ-
ent shadow models when encountering different attack net-
works, which validates the transferability of the adversarial
features generated by AdvFace.

C. Details of Trade-off
We further show the quantitative values of trade-off in

Tab. 1. We can see that when ϵ increases from 0.00 to 0.20,
the accuracy drops slightly, but the ability to against recon-
struction attacks improves rapidly. Moreover, the accuracy
drops faster from 0.25 to 0.30, while the ability to against
reconstruction attacks is further improved. All of these re-
sults that AdvFace could provide a good trade-off between
defending against reconstruction attacks and maintaining
face recognition accuracy. Finally, we choose ϵ to be 0.20
in the experiments.

Figure 4. Transferability of AdvFace on defending against recon-
struction attacks on dataset LFW.

Figure 5. Transferability of AdvFace on defending against recon-
struction attacks on dataset CFP-FP.

Figure 6. Transferability of AdvFace on defending against recon-
struction attacks on dataset AgeDB-30.
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