
Progressive Disentangled Representation Learning for Fine-Grained

Controllable Talking Head Synthesis

(Supplementary Material)

Duomin Wang Yu Deng Zixin Yin Heung-Yeung Shum Baoyuan Wang
Xiaobing.AI

{wangduomin, dengyu, yinzixin, harryshum, wangbaoyuan}@xiaobing.ai

I. More Implementation Details

I.1. Data Preparation

We train our method on all available videos in the train-
ing split of VoxCeleb2 [2] dataset. For evaluation, we use
the test split of both VoxCeleb2 and Mead [8] dataset. We
randomly sample 500 test video clips from VoxCeleb2, and
460 test clips from the Mead following the official setting.

All video frames are aligned following the official anno-
tations [2], and then resized and center-cropped to 224 ⇥
224. Corresponding audios are extracted from the original
videos by ffmpeg, and then processed with a sample rate
of 16, 000 and converted to Mel-spectrograms via FFT. The
window size, hop size, and the number of Mel bands are set
to 1, 280, 160 and 80, respectively.

I.2. More Training Details

Appearance and motion disentanglement. We fol-
low [1] to learn the appearance encoder Eapp, motion en-
coder Emot, and the extra image generator G0. Different
from [1], for the appearance encoder, we send a single ap-
pearance reference as input to obtain the appearance latent
feature during training, instead of taking the average latent
feature of multiple appearance frames in a video clip. Apart
from the original training losses proposed in [1], we fur-
ther introduce a motion reconstruction loss as described in
Sec. 3.1 in the main paper (i.e. Eq. (1)). We set the initial
learning rates for Eapp, Emot to 5e�5. The initial learn-
ing rates for G0 and an extra discriminator for computing
the adversarial loss in [1] are set to 5e�5 and 5e�6, respec-
tively. The learning rates of all networks are decayed by
a rate of 0.5 for every 80, 000 iterations. We trained the
whole pipeline with a batchsize of 24 for 50 epochs on 8
Tesla V100 GPUs with 32GB memory, which took around
2 weeks.

Lip motion disentanglement. We adopt the audio-visual
contrastive learning scheme [9] to learn the lip motion en-

Figure I. Our observation on disentangled eye motion control in
the face-reenactment setting in our appearance and motion disen-
tanglement stage. The first column is the appearance reference,
the second column is the reenactment result, the third column is
the driving source where the eye region comes from the images in
the last column. As shown in the figure, the eye motion can be
controlled independently without affecting the lip motion in this
scenario, which inspires us to design the eye-motion contrastive
learning.

coder Elip and the audio encoder Eaud. The two models are
trained on audio-video pairs with the InfoNCE loss [7] as
described in the main paper (i.e. Eq. (2) and (3)). The orig-
inal training scheme in [9] utilizes frames from the videos
different from those deriving the audio signals to construct
the negative pairs, which we found can learn non-lip motion
information in the obtained lip motion features. Therefore,
we only use the unsynchronized frames and audio from the
same video clip as the negative pairs during training. We
set the initial learning rates of Elip and Eaud to 1e�5, with
a decay rate of 0.93 by every 200, 000 iterations. We train
the two networks with a batchsize of 32 for 30 epochs. Each
item in a batch contains 1 positive pairs and 8 negative pairs.
The training took 2 days on 4 Tesla V100 GPUs.

Eye motion disentanglement. The eye motion encoder
Eeye is learned using our proposed eye-motion contrastive
learning described in Sec. 3.2 in the main paper. We de-
scribe more details about the motivation behind. Specifi-
cally, since our first stage is based on the face reenactment
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method of [1], we can already synthesize a talking face with
the unified motion feature of a driving frame and a given
appearance feature via the image generator G0. We find
that by simply replacing the eye region of the driving frame
with a new one bearing different eye blink and gaze, we
can achieve a disentangled control of eyes in the synthe-
sized face without affecting other facial motions, as shown
in Fig. I. Inspired by this, we formulate the eye-motion con-
trastive loss in the main paper.

We set the initial learning rate for Eeye to 1e�5, decayed
by a rate of 0.5 for every 80, 000 iterations. The network is
trained with a batchsize of 128 for 30 epochs. The training
took 2 days on 4 Tesla V100 GPUs.

Head pose disentanglement. The head pose encoder
Epose is learned by regressing the pseudo pose labels as de-
picted in Sec. 3.2 in the main paper. The learning rate of
Epose is also set to 1e�5 with a decay rate of 0.5 by every
80, 000 iterations. The network is trained with a batchsize
of 128 for 30 epochs similar to the eye motion encoder. The
training took 2 days on 4 Tesla V100 GPUs.

Expression disentanglement. The expression encoder
Eexp and our final image generator G are learned via
our proposed feature-level decorrelation and complemen-
tary self-reconstruction in Sec. 3.3 in the main paper. Dur-
ing this stage, all other networks are fixed, including Eapp,
Emot, Elip, Eaud, Eeye, and Epose. For the in-window
decorrelation, we set the window size to 13. For the lip-
motion decorrelation, we set the memory bank size to 512
for an accurate estimation of the feature correlation. We
set the initial learning rates to 1e�5 and 2e�5 for Eexp and
G, respectively. The learning rate for an extra discrimina-
tor to compute the adversarial loss is set to 3.5e�6. The
expression encoder is trained during the first 40, 000 itera-
tions and frozen for the following steps. The learning rates
for the generator and the discriminator are decayed with a
rate of 0.5 by every 80, 000 iterations. We use a batchsize
of 16 and train all networks for 50 epochs. It took 2 weeks
on 8 Tesla V100 GPUs.

The weight of different losses. In the first stage, the train-
ing loss consists of GAN loss, VGG loss, and our pro-
posed motion reconstruction loss. All of them are weighted
by 1.0 except for the VGG loss weighted by 10.0. In the
second stage, the lip-sync contrastive loss, the eye-motion
contrastive loss, and the head pose regression loss are also
weighted by 1.0. In the third stage, the VGG loss and the
GAN loss are weighted by 10.0. The motion reconstruc-
tion term in the motion-level consistency loss is weighted
by 10.0. All other terms in the motion-level consistency loss
and the lip-motion decorrelation loss are weighted by 1.0.

The above loss weights are empirically set without careful
tuning. We will add this detail in the revision.

I.3. Quantitative Evaluation Details

In Sec. 4.1 in the main paper, we conducted multi-
ple experiments for quantitative metrics calculation (i.e.
Tab. 1 and 2 in the main paper) under two different settings,
namely the self-driving setting and the cross-video setting.

In the self-driving setting, we use all test clips described
in Sec. I.1 for evaluation. We set the first frame in each
video as the appearance reference, and drive it using the
video frames and the corresponding audio from the same
video clip. The audio signals are used to drive the lip motion
and the video frames for other motions. Since the source
and the target are from the same video, we can easily use
the driving frames as the ground truth to evaluate the per-
formance of each method.

In the cross-video setting, we use the first frame from
100 randomly sampled test video clips as an appearance ref-
erence and use the first frame from another 100 random test
video clip as the driving frame to control all non-lip mo-
tions. We still use the audio signals from the video clip
of the corresponding appearance frame to control the lip
motion. The cross-video setting is designed to evaluate
the expression control performance, where we extract the
expression parameters of the synthesized videos and their
corresponding driving frames using a 3D face reconstruc-
tor [4], and compare the expression parameter difference.
This helps us to evaluate if a method can precisely transfer
the expression from a source to a target. By contrast, in the
self-driving setting, since the source and the target are from
the same video clip, their expressions are usually the same.
Under this circumstance, if a method well mimics the ex-
pression motion of the appearance reference, it is difficult
to judge whether it successfully transfers the source expres-
sion to the target or merely copies the expression from the
appearance reference.

I.4. User Study Details

We conduct two user studies to evaluate the motion con-
trol performance. In the first experiment, we ask partici-
pants to evaluate the accuracy of lip motion synchroniza-
tion and expression control, as well as the naturalness of all
facial motions. We generate 120 videos using 12 random
appearance references and 10 random driving clips and ran-
domly select 35 synthesized videos out of them for evalua-
tion. Fifteen participants are asked to score from 1 to 5 for
the quality of different properties in the synthesized videos
(5 is the best). The corresponding results are in Tab. 3 in the
main paper.

In the second experiment, we ask the same group of par-
ticipants to evaluate the disentanglement controllability of
our method. We generate 5 videos using an appearance ref-



Table I. Quantitative evaluation on factor disentanglement of our method. In each row, we compute the variance of a motion feature
extracted from the synthesized videos when controlling different individual motion factors.

Variance
Control property

lip pose blink gaze exp
Speech lip motion 11.24 5.16 0.83 0.74 3.76
Head pose 0.0091 0.1597 0.0041 0.0045 0.0088
Eye blink 0.00038 0.00389 0.06657 0.00089 0.00225
Eye gaze 0.089 0.100 0.095 0.105 0.088
Expression 3.07 3.07 2.98 2.93 3.59

erence and 3 randomly selected driving videos for the head
pose, expression, and eye motion, respectively. In each syn-
thesized video, only one motion factor is controlled by the
driving source and all other factors remain unchanged. The
participants are asked to score from 1 to 5 for the varia-
tion level of each motion in the synthesized videos (5 indi-
cates the largest variation, and 1 means nearly unchanged).
The corresponding results are in Tab. II and discussed in
Sec. II.2.

II. More Results

II.1. Fine-Grained Controllable Talking Heads

Figure V and VI show more talking head synthesis re-
sults by our method. Our method well mimics the motions
from different driving sources and combines them to gener-
ate vivid talking heads. Animations can be found in the

accompanying video.

II.2. Disentangled Controllability

We quantitatively evaluate the disentangled controllabil-
ity of our method. To this end, we generate talking head
images by only varying one motion factor and setting other
factors to zeros (i.e. canonical positions). We then extract
corresponding motion features from the synthesized results
and compute the variance of each motion factor in a video
clip. Ideally, if different motions are perfectly disentangled,
the computed variances will be close to zero for all motions
except the one being controlled.

In practice, we use off-the-shelf models to extract each
motion feature from our synthesized images. For eye gaze
and blink, we use the model of [6]. For expression and pose,
we use a 3D face reconstruction model [5]. For lip motion,
we use the model of [3]. The variance of each motion factor
f is computed using the following equation:

var(f) =
1

N

NX

i=1

1

Mi

MiX

j=1

kfij � f̄ik2, (I)

where fij is the corresponding extracted motion feature of
the j-th frame in the i-th video clip, f̄i is mean of fij , N

is the number of test videos, and Mi is the length of each
video clip.

Table I shows the computed variance of each motion fac-
tor. Each row shows the variance of a single motion factor
under different motion control. As shown, the variance of a
factor reaches the maximum when the controlling factor is
the same with it, and largely decreases when controlled un-
der a different motion factor. This indicates that our method
can disentangle different motion controls so that they have
a minor influence on each other.

However, the computed variance can still be large in
some cases (e.g. the left four columns in the last row in
Tab. I). This is due to that the off-the-shelf motion feature
extractors are not perfect and can be influenced by varia-
tions of other motions when extracting a certain motion fea-
ture. Therefore, we refer the readers to the accompanying
video to examine the disentanglement ability of our method.
We also conduct a user study to better evaluate the factor
disentanglement. The results are in Tab. II (see Sec. I.4 for
detailed description). As shown, the variance score is close
to 5 when the factor for variance calculation and the factor
to be controlled are the same, and close to 1 when they are
different, which reveals the disentangled controllability of
our method.

II.3. Expression Interpolation

We further investigate the expressive ability of our
learned expression feature. We show expression interpola-
tion results by linearly interpolating two expression features
from different expression sources. As shown in Fig. II, our
method can smoothly transfer between two different expres-
sions. The synthesized images at interpolated points also
have natural expressions. This indicates that our method
learns a reasonable expression latent space that supports
continuous expression control.

II.4. Comparison with the prior methods

We show the lip motion synthesis comparison in Fig. III.
The images are synthesized under the self-driving setting.
As depicted, the lip motion generated by our method is nat-



Table II. User study on factor disentanglement of our method.

Variance Control property
lip pose blink gaze exp

lip 4.7 1.1 1 1 1.1
pose 1.1 4.6 1 1.2 1.3
blink 1.1 1.1 4.1 1.5 1
gaze 1 1.1 1.4 4.4 1
exp 1.3 1.1 1 1 3.7

Exp1 Exp2 0 10.5

Figure II. Expression interpolation by our method.
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Figure III. Comparison on lip motion control. Images are synthe-
sized under the self-driving setting where the lip motion is driven
by the audio signal. Our method yields the best result.

ural and closer to the ground truth compare to the alterna-
tives. See the accompanying video for animations.

II.5. Ablation Study

Motion reconstruction loss. We further conduct an abla-
tion study to validate the efficacy of our motion reconstruc-
tion loss proposed in Sec. 3.1 in the main paper. As shown
in Tab. III and Fig. VII, with the motion reconstruction loss,
facial motions in the synthesized images contain more de-
tails and are closer to the driving sources. By contrast, re-
moving the motion reconstruction loss leads to poor reen-
actment results for driving sources with rich expressions.
As a result, the motion reconstruction loss is important for
obtaining an informative unified motion feature to achieve
accurate motion control.

Eye contrastive learning loss. We also conduct a vi-
sual ablation on the eye motion contrastive learning loss
illustrated in Fig. IV. Without eye contrastive learning,
blink&gaze are not controlled by the eye sources but kept
the same as the reference.

III. Ethics Consideration

Our method enables precise and disentangled control
over multiple facial motions for vivid talking head gener-
ation. While the major goal of it is to synthesize virtual
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Figure IV. Visual effect of eye motion contrastive loss

Table III. Ablation of motion reconstruction loss on expression and
pose control accuracy.

Method Expression# Pose#
VoxCeleb2 Mead VoxCeleb2

w/o mot loss 0.147 0.174 0.0021
w mot loss 0.141 0.160 0.0017

avatar for applications like live streaming, it can be mis-
used to create deceptive and harmful content of real peo-
ple. Especially, one may use it to synthesize fake videos of
celebrities. We do not condone using our method for gener-
ating misleading information that could harm people’s rep-
utations. We also suggest investigating advanced forgery
detection methods to identify the synthesized fake images
and videos to prevent illegal usage.
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Figure V. Fine-grained controllable talking heads synthesized by our method.

Appearance 
Reference

Pose 
Source

Eye 
Blink & Gaze 

Source

Audio 
Frames

Audio 
Soruce

Figure VI. Fine-grained controllable talking heads synthesized by our method.
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Figure VII. Ablation study on the motion reconstruction loss in the appearance&motion disentanglement learning.
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