
Supplementary Material for
Propagate And Calibrate: Real-time Passive Non-line-of-sight Tracking

1. NLOS-Track Dataset
1.1. Real-shot Data

1.1.1 Video collection and position calibration

To obtain paired wall-shooting videos and ground truth tra-
jectories, we record the relay wall with one camera and stick
another camera on the ceiling to have a corresponding top-
viewed video at the same time. Subjects walk around the
hidden room with Aruco code on head so that we can track
him with the top-viewed video. To improve the accuracy
and robustness of tracking, we put four Aruco codes on the
four corners of a hard and flat board. We use the Aruco API
provided in OpenCV [43] to obtain the 3D pose of Aruco
codes with respect to ceiling camera. In each frame of the
top-viewed video, only when all four codes are detected,
we take the average of four codes’ coordinates as the char-
acter’s position coordinate. Then translation and rotation
are applied to transform the character’s coordinate from the
camera system to the world system.

1.1.2 Stream alignment and cropping

We use two pulse signals that only last for a short moment
to mark the beginning and the ending time point of a single
clip. Two signals are designed to be visible by exposing
them to both two cameras. Since the time intervals of the
two signals in the two videos are equal, we are allowed to
manually align the two videos at a frame-level precision by
aligning the beginning time point and the ending time point
in the timeline.

1.1.3 Data cleaning

Although we use four codes to improve the tracking robust-
ness, there are still some point-sequences that we fail to
track due to jitters and blurs of pictures. Assume that the
missing points in one sequence are {~pi}, we use a linear
interpolation to complete them:

~pi ≈
N − i
N

~p0 +
i

N
~pN

= ~p0 +
i

N
(~pN − ~p0) , i = 1, 2, ..., N − 1,

(8)

where i is the index of the missing point. ~p0 denotes the
recorded point previous to the missing sequence while ~pN
denotes the subsequent recorded point. To perform this in-
terpolation, we make a reasonable assumption that there are
no sharp turns or changes in speed within N frames. In ad-
dition, we set a threshold of N ≤ 10 when conducting the
interpolation, which reinforces this assumption so that we
won’t introduce unbearable errors during data cleaning.

After completing missing points and excluding clips that
can not be completed, we crop the remaining paired videos
and ground truth trajectories into many 250-frame clips.
The videos are save as .npy files and trajectories are saved
as .mat files, along with corresponding room size.

1.2. Random Trajectory Generation

To simulate the realistic situation of people walking in
the room, we use a heuristic algorithm for generating near-
real continuous trajectories frame by frame. Given the
room size, we first select a random position ~p0 = (px0 , p

y
0)1

within the room as the initial position and a random vector
~v0 = (vx0 , v

y
0 ) as the initial walking direction. Considering

the effect of inertia and momentum in real world, in each
subsequent frame we make a slight and random change ∆~vt
to the current walking direction as that of the next step:

~vt+1 = ~vt + τ ·∆~vt , t = 0, 1, ..., (9)

where τ is an adjustable parameter called turning rate. By
setting τ properly, one can control the curvature degree
when generating trajectories. Specifically, we set the turn-
ing rate τ to 0.15 in our dataset because this value guaran-
tees a reasonable continuity and rotation magnitude of gen-
erated trajectories. In each frame, the character takes a step
forward in the new direction ~vt+1 and a continuous trajec-
tory can be generated:

~pt+1 = ~pt + ~vt , t = 0, 1, ... (10)

Note that the distance (in meters) of each frame step is not
fixed, but is randomly sampled with a uniform distribution
U(0.03, 0.04) for the sake of being realistic.

1Here we use p to denote position instead of x, which is distinguished
from x used to denote direction.

1



In addition, we ensured that the characters did not cast
any direct shadow on the wall that would be visible to the
naked eye while generating the trajectory.

1.3. Data Format in Dataset

We store all video clips in .npy format after cropping
them to squares and resizing them to a dimension of T ×
C ×H ×W , where C = 3 is the number of channels and
H = W = 128 is the spatial dimension. T = 250 in real-
shot data while T = 320 in synthetic data.

2. PAC-Net

2.1. Model Details

We use PyTorch [48] to build and train our neural net-
works. Besides ResNets [45], there are only two other basic
components in our model, which are GRU cells [44] and a
self-designed MLP decoder. The vector dimension of ex-
tracted features and hidden state h are both 128. Before
loading the pre-trained weights of ResNets, we substitute
the last linear layer in ResNets with another one with an out-
put dimension of 128. The two-layer MLP decoder takes in
the hidden state h as input. The 64-dimensional intermedi-
ate vector is activated by a ReLU, followed by a final linear
layer that outputs the 2-dimensional coordinate.

2.2. Model Training

During offline training, we use an equivalent imple-
mentation of networks to improve the training efficiency.
Instead of extracting feature frame-by-frame, we use two
ResNets in PAC-Cell to extract features from raw frames
and difference frames all at once after loading a video
clip. Then static features (from raw frames) and dynamic
features (from difference frames) are fed to P-GRU and
C-GRU alternatively.

For all networks, we train models for 70 epochs using
AdamW [47] optimizer with a weight decay of 2e-3. The
learning rate is set to 3e-4 and follows the cosine annealing
schedule [46]. The batch size is set to 32.

During training, we load a random T ′-frame clip from
the whole video clip of T frames, where T ′ ≤ T . This
practice further enhances the diversity of datasets.

3. More Analysis

3.1. Light sources

We set all three light sources on the ceiling (please refer
to Fig.1 in the main paper) so the useful information on the
wall mainly comes from the diffuse reflection rather than
obvious shadows (please refer to Sec.3 in the main paper).
Since the tracked person is always moving, the position of
lights relative to the person is not fixed.

Figure 8. How light sources affect metrics. Light type of (1, 0, 2)
means 1 point light, 0 spot light and 2 area lights are in the room.

In the synthetic dataset we vary the type(point, spot, and
area), position, rotation, and power of three light sources.
With so many factors influencing the light condition, it is a
ponderous task to conduct a fair and comprehensive inves-
tigation. In Fig. 8, we preliminarily show how metrics vary
with different light type combinations. We can see that with
2 area lights, we have relatively good tracking results on
average because more area light makes the room brighter,
thus can provide sufficient diffuse signal cast on the relay
wall for NLOS tracking. We found there is a coarsely posi-
tive correlation between light source area and performance.

3.2. Warm-up

When facing a variety of room settings in synthetic data,
the Warm-up stage plays an important role in “adapting” to
the current room (please refer to the grey dashed lines in
Fig.4 in the main paper). In contrast, due to the relatively
limited real-shot scenes, the potential of the Warm-up stage
cannot be fully demonstrated. We conduct an extra compar-
ison test on a small synthetic dataset with only two room
sizes. And we observe only minor differences between w/
and w/o Warm-up (Tab. 3). Thus we conclude that Warm-up
requires a diverse dataset to work.

Model RMSx RMSv(×10−3) Area DTW PCM
w/o Warm-up 0.1103 2.50 0.0776 1.698 2.613
w/ Warm-up 0.1105 2.03 0.0715 1.589 3.429

Table 3. Comparison test on warm-up.

4. More Visualisations
To demonstrate the test results in real scenes in an in-

tuitive way, we attach two demo videos in supplementary
materials2. In each video, we present the equivalent real-
time reconstructed trajectory, along with the corresponding
raw stream and difference stream. We use red squares to
highlight when and where the faint variation in the relay
wall can be detected by naked eyes with difference frames.

2Demos can also be found on the project website.

https://againstentropy.github.io/NLOS-Track/


References
[43] Gary Bradski. The opencv library. Dr. Dobb’s Journal:

Software Tools for the Professional Programmer, 25(11):120–
123, 2000. 1

[44] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using rnn
encoder–decoder for statistical machine translation. Empiri-
cal Methods in Natural Language Processing, 2014. 2

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, pages
770–778, 2016. 2

[46] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. arXiv preprint arXiv:1608.03983,
2016. 2

[47] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 2

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Im-
perative Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. 2


	. NLOS-Track Dataset
	. Real-shot Data
	Video collection and position calibration
	Stream alignment and cropping
	Data cleaning

	. Random Trajectory Generation
	. Data Format in Dataset

	. PAC-Net
	. Model Details
	. Model Training

	. More Analysis
	. Light sources
	. Warm-up

	. More Visualisations

