
RIFormer: Keep Your Vision Backbone Effective But Removing Token Mixer

Jiahao Wang1,2 Songyang Zhang1∗ Yong Liu3 Taiqiang Wu3 Yujiu Yang3

Xihui Liu2 Kai Chen1∗ Ping Luo2 Dahua Lin1

1Shanghai AI Laboratory 2The University of HongKong
3Tsinghua Shenzhen International Graduate School

wang-jh19@tsinghua.org.cn {zhangsongyang,chenkai,lindahua}@pjlab.org.cn

yang.yujiu@sz.tsinghua.edu.cn xihuiliu@eee.hku.hk pluo@cs.hku.hk

1. Detailed hyper-parameters of Sec.4

We provide some experimental settings of the explo-

ration roadmap of Sec.4 in the main paper. Generally, we

use a RIFormer-S12 model in this section, which is trained

and evaluated on ImageNet-1K for 120 epochs. We take

AdamW [3, 4] optimizer with batch size of 512 in all cir-

cumstances. For distillation experiments in Sec.4.2 and

Sec.4.3, GFNet-H-B [5] serves as the teacher with a logit

distillation following [8].

2. Proof of Eq.4

Given T(a) ∈ R
N×C×H×W , T′(a) ∈ R

N×C×H×W re-

spectively as the input and output of an affine residual sub-

block in Fig.2-(a) in the main paper. During the training

time, we have:

T′(a) = Affine(LN(T(a),µ,σ,γ,β), s, t)− T(a) (1)

where LN is the LN layer, µ,σ,γ,β as the mean, stan-

dard deviation and learned scaling factor and bias of the

LN layer, Affine is the affine transformation, s ∈ R
C and

t ∈ R
C are its learnable scaling and shift parameters. Dur-

ing the training time, we have:

T′(a) = LN(T(a),µ,σ,γ′,β′) (2)

According to the equivalence of the structural re-

parameterization of the affine residual sub-block during

training (Eq. 1) and inference (Eq. 2), for ∀1 ≤ n ≤ N ,

∀1 ≤ i ≤ C, ∀1 ≤ h ≤ H , ∀1 ≤ w ≤ W , we have:

((T
(a)
n,i,h,w − µn,h,w)

γi

σn,h,w

+ βi)si + ti

− (T
(a)
n,i,h,w − µn,h,w)

γi

σn,h,w

− βi

= (T
(a)
n,i,h,w − µn,h,w)

γ′

i

σn,h,w

+ β′

i

(3)

Algorithm 1 Affine Transformation, PyTorch-like Code

import torch.nn as nn

class Affine(nn.Module):
def __init__(self, in_features):

super().__init__()
self.affine = nn.Conv2d(

in_features, in_features, kernel_size=1,
stride=1, padding=0, groups=in_features
, bias=True)

def forward(self, x):
"""
[B, C, H, W] = x.shape
Subtraction of the input itself is added
since the block already has a
residual connection.
"""
return self.affine(x) - x

Eq. 3 can be reformulated as:

γ′

i = γi(si − 1), β′

i = βi(si − 1) + ti, (4)

Then Eq.4 in the main paper follows.

3. Code in PyTorch

3.1. PyTorch-like code of our affine operator

We provide the PyTorch-like code of the affine transfor-

mation in Alg. 1 affiliated with the training-time model in

the RIFormer block. The affine transformation can be im-

plemented as a depth-wise convolution by specifying the

kernel size as 1 and the group number as the input channels.

We follow [11] to add a subtraction of the input during im-

plementation due to the residual connection.

3.2. PyTorch-like code of the RIFormer block

We provide the PyTorch-like code of the RIFormer block

with the strctural re-parameterization in Alg. 2.

1

4. Detailed hyper-parameters on ablations

We provide the experimental settings of ablation studies

of Sec.5 in the main paper.

For the 74.90% and 75.36% top-1 accuracy experiments

in Tab.7 in the main paper, GFNet-H-B [5] serves as the

teacher with a logit distillation, and PoolFormer-S12 [11]

serves as the teacher for adopting the proposed module imi-

tation strategy. For (L′

in,Lout) and Lrel in Eq.9 in the main

paper, the number of epochs of using them are 80 and 20,

respectively. The differences are as follows. In the 74.90%
experiment, we set λ2 = λ3 = 0 in Eq.9 to obtain a hid-

den state feature distillation. In the 75.36% experiment, we

choose λ2 and λ3 as in Tab. 1, and initialize the weights of

RIFormer (except the affine operator) with the correspond-

ing teacher network, as presented in Sec.4.4 of the main

paper.

For Tab.9 in the main paper, we adopt the architectural

modifications in [12] to our RIFormer, and construct two

models with 12 and 18 layers as our student model, respec-

tively. For distillation experiments in Tab.9, GFNet-H-B [5]

serves as the teacher with a logit distillation. RandFormer-

S12 [12], PoolFormer V2-S12 [12], ConvFormer-S18 [12],

CAFormer-S18 [12] serve as teacher networks for module

imitation. We train and evaluate on ImageNet-1K for 130

epochs (with 10 patient epochs).

5. Detailed hyper-parameters of ImageNet-1K

We provide the experimental settings of ImageNet-

1K classification of Sec.5 in the main paper in Tab. 1.

The hyper-parameters generally follow [11]. We use

AdamW [4] optimizer with a batch size of 1024 and

weight decay of 0.05, and learning rate lr = 1e−3 ·

batch size/1024. Stochastic Depth [2], Label Smoothing

[7] and Layer Scale [9] are also adopted to regularize the

networks. For the RIFormer result with 2242 input resolu-

tion in Tab.6 in the main paper, GFNet-H-B [5] serves as the

teacher with a logit distillation, and a PoolFormer [11] with

same parameter size serves as the teacher for adopting the

proposed module imitation strategy. For the 3842 RIFormer

finetuning results, we use ConvFormer [12] as the teacher

with a logit distillation and do not perform module imita-

tion in the step. For the throughput measurement, we take a

batch size of 2048 at 2242 resolution (1024 for 3842 resolu-

tion) with one 80GB A100 GPU and calculate the average

throughput over 30 runs to inference that batch. The pro-

cess is repeated for three times and the medium are treated

as the statistical throughput.

6. Visualization of the learned coefficients

To further evaluate the effect of the proposed module im-

itation algorithm, we visualize the learned coefficients of

the weights (denoted as s) of the affine operator with (above

the black dotted line) or without (below the black dotted

line) the module imitation technique. Specifically, we pro-

vide the learned affine weights of a shallow block (Stage

1, Block 1), an intermediate block (Stage 3, Block 6), and

a deep block (Stage 4, Block 1). As shown in Fig. 1, the

affine weights trained using module imitation show differ-

ences with those of trained without such technique. Take

Fig. 1-(c) as an instance. The affine weights without using

module imitation are relatively more consistent and appear

to show more positive values. As a comparison, module im-

itation help the affine operator learn more diverse and nega-

tive weights, which may useful for the expressiveness of our

RIFormer. Similarly in Fig. 1-(b), the affine weights using

module imitation have more moderate amplitude, compared

to a higher amplitude of without the method.

7. Visualization of the activation parts

Following [11], we provide qualitative results of

four different pre-trained backbones obtained by Grad-

CAM [6], respectively RSB-ResNet50 [1, 10], DeiT-S [8],

PoolFormer-S24 [11] and our RIFormer-S24. As observed

in [11], the activation parts in the map of a transformer

model are scattered, while that of a convnet are more ag-

gregated. Interestingly, two additional observation can be

made. Firstly, it seems that RIFormer trained with the pro-

posed module imitation algorithm combines the character-

istics of both convnet and transformer. We deem the reason

might be that RIFormer has the same general architecture

as transformer, but without any attention (i.e., token mixer),

and thus it is essentially a convnet. Secondly, the activation

parts in the RIFormer map of show similar characteristics

of that in PoolFormer, which may be due to the inductive

bias implicitly incorporated from the teacher model via the

knowledge distillation process.

RIFormer

S12 S24 S36 M36 M48

Peak drop rate of stoch. depth dr 0.1 0.1 0.1 0.1 0.1

LayerScale initialization ϵ 10−5 10−5 10−6 10−6 10−6

λ1 × batch size in Eq.9 0.0001 0.0003 0.0001 0.0001 0.0001
λ2 × batch size in Eq.9 0.001 0.005 0.001 0.001 0.001
λ3 × batch size in Eq.9 1.0 4.0 1.0 1.0 1.0
Data augmentation AutoAugment

Repeated Augmentation off

Input resolution 224

Epochs 600

Number of epochs of using (L′

in,Lout) 400

Number of epochs of using Lrel 100

Warmup epochs 5

Hidden dropout 0

GeLU dropout 0

Classification dropout 0

Random erasing prob 0.25

EMA decay 0

Cutmix α 1.0

Mixup α 0.8

Cutmix-Mixup switch prob 0.5

Label smoothing 0.1

Relation between peak learning

rate and batch size
lr = batch size

1024 × 10−3

Batch size used in the paper 1024 1024 1024 1024 512
Peak learning rate used in the paper 1× 10−3

Learning rate decay cosine

Optimizer AdamW

Adam ϵ 1e-8

Adam (β1, β2) (0.9, 0.999)

Weight decay 0.05

Gradient clipping None

Table 1. Hyper-parameters for image classification on ImageNet-1K

Algorithm 2 RIFormer Block (dubbed as AffineFormerBlock), PyTorch-like Code

import torch.nn as nn

class AffineFormerBlock(nn.Module):

def __init__(self, dim, mlp_ratio=4., act_layer=nn.GELU, norm_layer=GroupNorm,
drop=0., drop_path=0.,
use_layer_scale=True, layer_scale_init_value=1e-5, deploy=False):

super().__init__()
if deploy:

self.norm_reparam = norm_layer(dim)
else:

self.norm1 = norm_layer(dim)
self.token_mixer = Affine(in_features=dim)

self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,

act_layer=act_layer, drop=drop)

The following two techniques are useful to train deep AffineFormers.
self.drop_path = DropPath(drop_path) if drop_path > 0. \

else nn.Identity()
self.use_layer_scale = use_layer_scale
if use_layer_scale:

self.layer_scale_1 = nn.Parameter(
layer_scale_init_value * torch.ones((dim)), requires_grad=True)

self.layer_scale_2 = nn.Parameter(
layer_scale_init_value * torch.ones((dim)), requires_grad=True)

self.norm_layer = norm_layer
self.dim = dim
self.deploy = deploy

def forward(self, x):
if hasattr(self, ’norm_reparam’):

if self.use_layer_scale:
x = x + self.drop_path(

self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)

* self.norm_reparam(x))
x = x + self.drop_path(

self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)

* self.mlp(self.norm2(x)))
else:

x = x + self.drop_path(self.norm_reparam(x))
x = x + self.drop_path(self.mlp(self.norm2(x)))

else:
if self.use_layer_scale:

x = x + self.drop_path(
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)

* self.token_mixer(self.norm1(x)))
x = x + self.drop_path(

self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)

* self.mlp(self.norm2(x)))
else:

x = x + self.drop_path(self.token_mixer(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))

return x

def fuse_affine(self, norm, token_mixer):
gamma_affn = token_mixer.affine.weight.reshape(-1)
gamma_affn = gamma_affn - torch.ones_like(gamma_affn)
beta_affn = token_mixer.affine.bias
gamma_ln = norm.weight
beta_ln = norm.bias
print(’gamma_affn:’, gamma_affn.shape)
print(’beta_affn:’, beta_affn.shape)
print(’gamma_ln:’, gamma_ln.shape)
print(’beta_ln:’, beta_ln.shape)
return (gamma_ln * gamma_affn), (beta_ln * gamma_affn + beta_affn)

def get_equivalent_scale_bias(self):
eq_s, eq_b = self.fuse_affine(self.norm1, self.token_mixer)
return eq_s, eq_b

def switch_to_deploy(self):
if self.deploy:

return
eq_s, eq_b = self.get_equivalent_scale_bias()
self.norm_reparam = self.norm_layer(self.dim)
self.norm_reparam.weight.data = eq_s
self.norm_reparam.bias.data = eq_b
self.__delattr__(’norm1’)
if hasattr(self, ’token_mixer’):

self.__delattr__(’token_mixer’)
self.deploy = True

(a) Stage 1, Block 1

(b) Stage 3, Block 6

(c) Stage 4, Block 1

s (w/o MI)

s (w/ MI)

s (w/o MI)

s (w/ MI)

s (w/o MI)

s (w/ MI)

Figure 1. The heatmap of the learned coefficients of the affine transformation in (a) Stage 1, Block 1, (b) Stage 3, Block 6, (c) Stage 4,

Block 1, respectively. The values of the learned coefficients are given different colors for positive and negative number.

Input RSB-ResNet-50 [10] DeiT-small [8] PoolFormer-S24 [11] RIFormer-S24

Figure 2. Grad-CAM [6] activation maps of four different pre-trained backbones on ImageNet-1K. We sample 4 images to visualize from

the validation set.

References

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 2

[2] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q

Weinberger. Deep networks with stochastic depth. In ECCV,

2016. 2

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 1

[4] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. ICLR, 2019. 1, 2

[5] Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and

Jie Zhou. Global filter networks for image classification. In

NeurIPS, 2021. 1, 2

[6] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,

Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.

Grad-cam: Visual explanations from deep networks via

gradient-based localization. In ICCV, 2017. 2, 6

[7] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception ar-

chitecture for computer vision. In CVPR, 2016. 2

[8] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and HervÂe JÂegou. Training

data-efficient image transformers & distillation through at-

tention. In ICML, 2021. 1, 2, 6

[9] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,

Gabriel Synnaeve, and HervÂe JÂegou. Going deeper with im-

age transformers. arXiv preprint arXiv:2103.17239, 2021.

2

[10] Ross Wightman, Hugo Touvron, and HervÂe JÂegou. Resnet

strikes back: An improved training procedure in timm. arXiv

preprint arXiv:2110.00476, 2021. 2, 6

[11] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou,

Xinchao Wang, Jiashi Feng, and Shuicheng Yan. Metaformer

is actually what you need for vision. In CVPR, 2022. 1, 2, 6

[12] Weihao Yu, Chenyang Si, Pan Zhou, Mi Luo, Yichen Zhou,

Jiashi Feng, Shuicheng Yan, and Xinchao Wang. Metaformer

baselines for vision. arXiv preprint arXiv:2210.13452, 2022.

2

