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Appendix

A. Background of Diffusion Models
Diffusion models produce data by reversing a grad-

ual noising process. The forward noising process is a
Markov chain that corrupts the data by gradually adding
random noises for steps t = 1, · · · , T . Each step in the
forward process is a Gaussian transition q(xt|xt−1) :=
N (

√
1− βtxt−1, βtI), where {βt}Tt=0 are usually pre-

defined variance schedule. Furthermore, the noisy latent
variable xt can be derived from x0 directly as:

xt =
√
αtx0 +

√
1− αtz, z ∼ N (0, I), (1)

where αt :=
∏t

s=1 (1− βs). When T is large enough, αT

gets closer to 0 and the last latent variable xT is nearly an
isotropic Gaussian distribution.

To sample data from the given distribution, we can re-
verse the noising process by learning a denoising model
ϵθ(xt, t). The denoising model ϵθ(xt, t) starts from the
Gaussian noise xT and iteratively reduces the noise for
t = T − 1, · · · , 0. Specifically, it takes the noisy latent
variable xt at each timestep t and predicts the correspond-
ing noise ϵ with a minimal mean square error:

min
θ

Ex0∼p(x0),z∼N (0,I),t||ϵθ(xt, t)− z||22. (2)

With the learned denoising model, the data can be sampled
with the following reverse diffusion process:

xt−1 =
1√

1− βt

(
xt −

βt√
1− αt

ϵθ(xt, t)

)
+ σtz, (3)

where z ∼ N (0, I) is a randomly sampled noise, and σt is
the variance of the added noise.

B. Implementation Details
B.1. Architectural Design and Training Details

Our base diffusion model adopts the U-Net architecture
from [3] with a channel number of 192, while we make sev-
eral modifications including tri-plane roll-out and 3D-aware
convolution, as discussed in Section ??. To orchestrate the

tri-plane generation and enable semantic editing, we also in-
troduce a condition encoder, a fixed CLIP ViT-B/32 image
encoder, to map a reference image to a semantic latent vec-
tor. The upsample diffusion model is a U-Net-like model
but we apply only one upsample layer that directly upscales
the feature maps from 64 to 256 for efficiency, as shown
in Figure 1. The tri-plane roll-out and 3D-aware convolu-
tion are utilized in each residual block. When training the
upsample model, we apply condition augmentation on the
tri-planes to reduce the domain gap as described in Section
??. Specifically, we degrade the ground-truth 256×256 tri-
planes with a random combination of downscale, Gaussian
blur, and Gaussian noise.

We utilize AdamW optimizer [4] with a batch size of 48
and a learning rate of 5e-5 for the base diffusion model, and
with a batch size of 16 and a learning rate of 5e-5 for the
upsample diffusion model. We also apply the exponential
moving average (EMA) with a rate of 0.9999 during train-
ing. We set the diffusion steps as 1,000 for the base model,
and 100 for the upsample model, with a linear noise sched-
ule. During inference we sample 100 diffusion steps for
both the base model and the upsample model. All the exper-
iments are performed on NVIDIA Tesla 32G-V100 GPUs.

B.2. Tri-plane Fitting

Our framework learns the 3D avatar generation from ex-
plicit 3D representations obtained from fitting multi-view
images. However, a multi-view consistent, diverse, high-
quality and large-scale dataset of face images is difficult
and expensive to collect. Images collected from the Web
have no guarantee of multi-view consistency and suffer pri-
vacy and copyright risks. Regarding this, we turn to syn-
thetic techniques that can randomly render novel 3D por-
traits by randomly combining assets manually created by
artists. We leverage the Blender synthetic pipeline [7] that
generates human faces along with random sampling from a
large collection of hair, clothing, expression and accessory.
Hence, we create 100K synthetic individuals independently
and for each render 300 multi-view images with a resolution
of 256× 256.

For tri-plane fitting, we learn 256 × 256 × 32 × 3 spa-
tial features for each person along with a lightweight MLP

1



xt

LR

ොx0,t

Figure 1. Architecture of the upsample diffusion model.
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Figure 2. Architecture of the MLP decoder.

decoder consisting of 4 fully connected layers as shown in
Figure 2. We randomly initialize the tri-plane feature and
MLP weights. During fitting, we apply random rescaling
(downsample to a resolution in [64, 256] followed by an up-
sampling to 256) to ensure that the MLP decoder is robust to
multi-resolution tri-plane features. To enable scalable and
efficient fitting, we first optimize the shared 4-layer MLP
decoder when fitting the first 1,000 subjects, and this de-
coder is fixed when fitting the following subjects. Thus dif-
ferent subjects are fitted separately in distributed servers.

For multi-view images {x}Nv
for the given subject,

where x ∈ RH0×W0×3, we minimize the mean squared er-
ror LMSE between the rendered image via volumetric ren-
dering, i.e., x̂ = R(c, σ) and the corresponding ground
truth image. Moreover, we introduce additional regularizers
to improve the fitting quality. To be specific, we manage to
reduce the “floating” artifact by enforcing the sparsity loss
Lsparse which penalizes the ℓ1 magnitude of the predicted
density, the smoothness loss Lsmooth [2] that encourages a
smooth density field, as well as the distortion loss Ldist [1]
that encourages compact rays with localized weight distri-
bution.

B.3. Text-based Avatar Customization

As shown in Section ??, the RODIN model can edit gen-
erated avatars with text prompts. For a generated avatar with
a conditioned latent zi, we can obtain an editing direction
δ = Eclip

T (Ttgt)−Ecilp
T (Tsrc) in the text embedding space

of CLIP based on prompt engineering. For instance, we can
choose the source text Tsrc from some general descriptions
such as “a photo of a person” and “a portrait of a person”,
and use the target text Ttgt such as “a photo of a person
with blond hair” and “a photo of a smiling person ”. As
we assume colinearity between the CLIP’s image and text
embedding, we can obtain the manipulated embedding as

64 128 256 384 512
Tri-plane resolution

29

30

31

32

33

PS
N

R

Figure 3. Effect of tri-plane resolution for tri-plane fitting.
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Figure 4. Effect of image numbers for tri-plane fitting.

zi + δ, which is used to generate edited avatars.

B.4. Latent Diffusion for Unconditional Sampling

As discussed in Section ??, our base diffusion model
supports both unconditional generation and conditional
generation. To account for full diversity during uncondi-
tional sampling, we additionally train a diffusion model to
model the distribution of the latent z. The latent diffusion
adopts a 20-layer MLPs network [5] with the hidden chan-
nel of 2048 that iteratively predicts the latent code z ∈ R512

from random Gaussian noise. We set the diffusion steps as
1,000 with a linear noise schedule. We utilize AdamW op-
timizer with a batch size of 96 and a learning rate of 4e− 5,
and also apply exponential moving average (EMA) with a
rate of 0.9999 during training.

B.5. Text-to-avatar Generation

As shown in Section ??, we perform text-to-avatar gen-
eration by training a text-conditioned diffusion model that
generates an image embedding from a text embedding in
the CLIP space. We adopt the network architecture from [6]
and train it on a subset of the LAION-400M dataset, con-
taining 100K portrait-text pairs. We set the diffusion steps
as 1,000 with a linear noise schedule. We utilize AdamW
optimizer with a batch size of 96 and a learning rate of
4e− 5, and also apply exponential moving average (EMA)



Figure 5. Visualization of intermediate generation results of dif-
ferent time steps.

Base + Roll-out + 3D-aware conv

Figure 6. Both tri-plane roll-out and 3D-aware convolution are
crucial for high-fidelity results.

with a rate of 0.9999 during training.

C. Additional Ablation Study and Analysis
C.1. Tri-plane Settings

Choices of Tri-plane resolution. To analyze the impact of
tri-plane resolution, we experiment with different tri-planes
from a set of {64, 128, 256, 384, 512} to fit 1024 × 1024
images and show the results in Figure 3. Overall, the fitting
quality increases with the tri-plane resolution. Empirically,
we find that the 256 × 256 tri-plane is strong enough to
represent a subject. Considering the memory cost, we thus
choose to utilize 256× 256 tri-planes in our experiments.
Number of images for fitting. We also explore how many
images are needed to achieve a high-quality fitting. As
shown in Figure 4, the fitting quality get almost saturated
when using 300 different views for the neural tri-plane re-
construction.

C.2. Visualization of Different Diffusion Steps

Diffusion models generate samples by gradually remov-
ing noises for t ∈ [T, 0], and analyzing these intermediate
results would reach an in-depth understanding of the gen-

Scale w/o CFG 1.2 1.5 3.0 6.0

PSNR 24.06 24.21 24.07 24.05 24.15
SSIM 0.795 0.794 0.792 0.782 0.775
LPIPS 0.128 0.121 0.133 0.141 0.146

Table 1. Quantitative results of conditional avatar reconstruction.

eration process. We thus demonstrate the generated results
over the reverse process in Figure 5, where we render the
predicted tri-plane of our base diffusion, x̂0, at each time
step t. Notwithstanding that our diffusion is performed in
tri-plane feature space, the reverse process is similar to that
in image space, where the coarse structure appears first and
fine details appear in the last iterative steps.

C.3. Effect of 3D-aware Convolution

By rolling out tri-plane feature maps and applying 3D-
aware convolution, the RODIN model performs 3D-aware
diffusion using an efficient 2D architecture. As analyzed
in Section ??, tri-plane roll-out and 3D-aware convolution
are crucial for high-fidelity results, especially for thin struc-
tures such as hair strands and clothing details, by enhancing
cross-plane communication. To validate the impact of these
designs in high-quality tri-plane, we modify the upsample
diffusion model with different configurations and remove
the convolution refinement with the base diffusion fixed.
Figure 6 demonstrates with rollout and 3D-aware convolu-
tion, the full model shows a clear improvement compared
to the base model.

C.4. Nearest Neighbors Analysis

The RODIN model enables a hassle-free creation expe-
rience of an unlimited number of avatars from scratch, each
avatar being distinct. Figure 7 shows the nearest neighbors
of some generated samples in the main paper, which indi-
cates that the model does not simply memorize the training
data.

C.5. Conditional Avatar Generation

Quantitative metrics. On top of unconditional generation,
we can also hallucinate a 3D avatar from a single reference
image by conditioning the base generator with the CLIP
image embedding for that input image. We evaluate the
conditional generation on 1K test data where each subject
contains 300 images from different views. Table 1 reports
the metrics between reconstructed images and ground-truth
synthetic images.
Classifier-free guidance. Our model supports classifier-
free guidance (CFG) sampling when inference, which is a
technique typically used to boost the sampling quality in
conditional generation. Table 1 evaluates generation qual-
ity with different scales of classifier-free guidance in terms
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Figure 7. Nearest neighbors in the training data according to CLIP feature similarity.
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Figure 8. Failure cases.

User study Ours > GIRAFFE Ours > EG3D Ours > Autoencoder

Preference Rate 100% 90.8% 95.4%

Table 2. User study.

of PSNR, SSIM and LPIPS.

C.6. User Study

We perform a user study to evaluate the randomly sam-
pled avatars, where each participant is given a pair of results
from different methods at once and asked to select a better
one. As shown in Table 2, Rodin outperforms other meth-
ods by a large margin.

D. Failure Cases

As shown in Fig. 8, our method still has some limita-
tions: (a) The current model may not generate old people
or children well due to data bias. (b) Complex patterns in
clothes are challenging to generate. (c) Sometimes there are
floating NeRF artifacts.

E. Additional Visual Results

Figure 9 and Figure 10 show more random samples gen-
erated by the RODIN model, showing the capability to syn-
thesize high-quality 3D renderings with impressive details.
To reflect the geometry, we also extract the mesh from
the generated density field using marching cubes, which
demonstrates high-fidelity geometry. Figure 11 gives un-
curated generated samples, which possess visually-pleasing
quality and diversity. We also explore the interpolation of
the latent condition z between two generated avatars, as
shown in Figure 12, where we observe consistent interpo-
lation results with smooth appearance transition. Figure 12
shows additional results of creating 3D portraits from a sin-
gle reference image.

F. Societal Impact

The RODIN model aims to enable a low-cost, fast and
customizable creation experience of 3D digital avatars that
refer to the traditional avatars manually created by 3D
artists, as opposed to photorealistic avatars. The reason for
focusing on digital avatars is twofold. On the one hand,
digital avatars are widely used in movies, games, the meta-
verse, and the 3D industry in general. On the other hand, the
available digital avatar data is very scarce as each avatar has
to be painstakingly created by a specialized 3D artist using a
sophisticated creation pipeline, especially for modeling hair
and facial hair.

Rather than collecting real photos, all our training im-
ages are rendered by Blender. Such synthetic data can miti-



Figure 9. Unconditional generation samples by our RODIN model. We visualize the mesh extracted from the generated density field.

gate the privacy and copyright concerns that existed in real
face collection. Another advantage of using synthetic data
is that we could have control over the variation and diver-
sity of rendered images, eliminating the data bias in exist-
ing face datasets. Also, digital avatars are easier to be dis-
tinguished from real people compared with photo-realistic
avatars, hindering misuse for impersonating real persons.
Nonetheless, the 3D portrait reconstruction and text-based

avatar customization could still be misused for spreading
disinformation maliciously, like all other AI-based content
generation models. We caution that the high-quality render-
ings produced by our model may potentially be misused and
viable solutions so avoid this include adding tags or water-
marks when distributing the generated photos.

This work successfully generalizes the power of diffu-
sion models from 2D to 3D and is promising to offer the



new design tool for 3D artists which could significantly
save the costs of the traditional 3D modeling and render-
ing pipeline. In the next we intend to explore the possibility
of modeling general 3D scenes using the same technique
and investigate novel applications such as Lego and archi-
tect designs.
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Figure 10. Unconditional generation samples by our RODIN model.



Figure 11. Uncurated generation results by our RODIN model.

Figure 12. Latent interpolation results for generated avatars.



Figure 13. Additional results of portrait inversion.
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