
Raw Image Reconstruction with Learned Compact Metadata
Supplementary Material

In the supplementary material, we provide more details about the implementation details, including the network design,
and the details of the visualization in the main paper. Besides, we provide more ablation studies and qualitative comparison,
including the reconstruction qualities under different bpp and the effectiveness of learned sampling masks, to demonstrate
the effectiveness of the proposed method.

1. Implementation details
Hyper-parameter λ in Eq. 3. For the hyper-parameter λ which controls the tradeoff between the codelength and recon-

struction quality defined in Eq. 3 in the main paper, we set it to 1 for uncompressed sRGB images and 0.05 for the compressed
ones. We use a higher λ for the uncompressed sRGB images because it is relatively easier to do the reconstruction with high
fidelity using a small codelength based on the uncompressed images.

Model architecture in Fig. 3. We further introduce details of the proposed architecture as a supplement to Fig. 3 and
Fig. 4 in the main paper. For the residual connection with a different channel number in Fig. 3 of the main paper, we use an
1× 1 convolutional kernel in the residual connection to make them compatible. We adopt the same attention block in [3]. In
addition, /2 in ha in Fig. 2 of the main paper represents the downsampling operation, i.e., the resolution of auxiliary variable
v is down-sampled by a factor of 4.

Quantization error map in Fig. 2. To illustrate the information loss caused by the non-linear transform and quantization
step is non-uniform, we display the quantization error map in the main paper in Fig. 2. The quantization error map is
estimated as follows: For a raw image x, we first obtain its rendered sRGB image y without quantization. We calculate and
save the mapping relationship w = x/(y + ϵ) where / is a pixel-wised division and ϵ is a small constant, i.e., 1e-3. For an
sRGB image after quantization ŷ, the quantization error map e is calculated as e = |w · (ŷ + ϵ)− x|.

The estimation of bpp maps in Fig. 9. We estimate the likelihood of latent code y and z using Eq. 4 in the main paper.
The number of bits can be estimated by − log2 p(x) where p(x) is the estimated likelihood. Specifically, since the spatial
resolution of v is smaller than z, we interpolate the estimated bpp maps of v to the same size as z and keeps the total bits of
v unchanged. Finally, the visualization of the bits map in Fig. 9 includes bits both allocated by z and v.

2. Additional results
2.1. Highlights and shadows/Manipulation

For shadows, the proposed method achieves low reconstruction error and few bits are allocated to as in Fig. 2. Besides, the
reconstructed RAW images achieve better exposure latitude, i.e., fewer artifacts than JPEG or sometimes even the reference
RAW image after contrast enhancement. More bits are adaptively allocated to highlights since they suffer more severe
information loss due to dynamic range clipping and tone mapping as in Fig. 3.

2.2. Computational cost

Our method can be trained and evaluated on a single RTX A5000 GPU. Specifically, we evaluate the computational cost
of our proposed method and other SOTA methods. The results are shown in Table 1 measured by a commonly used library
thop 1. As we can see in the table, with the help of our proposed sRGB-guided context model, the context model becomes
feasible in the raw image reconstruction task where the feature resolution is much higher. Compared with other learning
based models, our method is lightweight with fewer parameters. In addition, we achieve comparable speed with other DNN-
based networks, e.g., InvISP [9] and SAM [6], and faster speed than test-time model SAM [6]. Besides, the speed bottleneck

1https://github.com/Lyken17/pytorch-OpCounter
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(a) Samsung NX2000
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(b) Olympus E-PL6

0.2 0.4 0.6 0.8 1.0
bpp

25.0

27.5

30.0

32.5

35.0

37.5

40.0

PS
NR

InvISP
SAM
Nam et al.
Ours

0.2 0.4 0.6 0.8 1.0
bpp

0.88

0.90

0.92

0.94

0.96

SS
IM

InvISP
SAM
Nam et al.
Ours

(c) Sony SLT-A57

Figure 1. The reconstruction qualities of models under different bpp. We evaluate the performance of models using compressed JPEG
images with a quality factor of 10 from the NUS dataset [2]. The file size of JPEG images is also taken into consideration for the calculation
of the bpp, e.g., the bpp of InvISP is equal to the bpp of JPEG images since InvISP does not save additional metadata.

(a) JPEG image (bpp=1.02) (b) Error map (c) Bits allocation map (bpp=0.011)

(d) JPEG image after
contrast enhancement

(e) Zoom in of the
patch from JPEG

(f) The patch from
reconstructed Raw

(g) The patch from
the lossless Raw

Figure 2. The bits allocation and visualization of the shadow areas. All the second-row images have undergone contrast enhancement.

of our proposed method becomes the arithmetic coding instead of the previous context model [3, 4]. Our proposed method
can be further accelerated by running the arithmetic coding on GPUs [1, 7, 8], which is out of the scope of the paper.



(a) JPEG image (bpp=1.35) (b) Bits allocation map
(bpp=0.0128)

(d) Reconstructed raw image
(PSNR 46.18 SSIM: 0.9950)

(e) Reference raw image(c) Error map

Figure 3. The results for highlights (red bounding box area).

Parameters FLOPs Compress & Decompress time

InvISP [9] 1.41MB 18.06T 5.13s
SAM [6] (bpp 9.56e-4) N/A – 16.40s
SAM [6] (bpp 9.52e-3) N/A – 103.92s

Nam et al. [5] 2.59MB 5.23T 1.50s
Ours (serial) 0.53MB – > 10 hours

Ours 0.55MB 5.82T 1.60+6.72 (arithmetic coding on CPU)=8.32s

Table 1. The comparison of the computational cost of different methods, given a 2920×4386 input. N/A in SAM [6] means it is a parameter
free method. Ours (serial) means we substitute the commonly used PixelCNN based context model [3, 4] for our proposed sRGB-guided
context model. The arithmetic coding in our method can be further accelerated [1, 7, 8] by running it on GPU.

2.3. Reconstruction qualities with different bpp

We further explore the performance of the proposed model when we increase the bpp, i.e., by increasing the weight of the
reconstruction term. We re-train a model with λ = 0.5 instead of 0.05 in the main paper. The results evaluated on JPEG
images with the quality factor of 10 are reported in Fig. 1. As shown in the figure, the performance of our method is greatly
improved (around 6 in terms of PSNR) with the increase of the bpp while still remaining lower than Nam et al. [5]. Besides,
we can significantly improve the reconstruction quality even if the file size of additionally saved metadata is almost negligible
compared with the size of JPEG images. The visualizations of error maps are shown in Fig. 5 and Fig. 4. Some visualization
results in the image space can be seen in Fig. 6. As we can see, our method achieves much better reconstruction quality with
lower bpp than all other SOTA methods. In addition, due to the low quality of conditioned JPEG images, SAM [6] fails in
some of the blocks due to the non-exitance of solutions for the systems of linear equations.

Fidelity bpp

PSNR SSIM Deterministic Random sparse The proposed
mask mask learnable mask

Samsung 37.814 0.96757 3.102e-01 2.928e-01 2.854e-01
Olympus 39.517 0.97745 2.967e-01 2.764e-01 2.694e-01

Sony 39.936 0.97972 2.835e-01 2.691e-01 2.606e-01
Mean 39.089 0.97491 2.968e-01 2.794e-01 2.718e-01

Table 2. The ablation study on the proposed learnable order prediction model. We evaluate the performance of methods conditioned on
JPEG images with quality factor of 10 on NUS dataset.

2.4. Ablation study on learnable order masks

As illustrated in the main paper, our proposed sRGB-guided context model has two parts: the order prediction module and
the iterative Gaussian entropy model. In this subsection, we explore the effectiveness of the design of the sampling masks
during the compress/decompress processes. We evaluate the performance of the following strategies



• A deterministic mapping formulated by

Mk
i,j =

{
1, argmaxc(m

c
i,j) = k

0, otherwise
(1)

• Random sparse masks Mi that satisfy
∑N

i=0 M
i = 1 where 1 is an all-one mask.

• The strategy adopted in the main paper. Specifically, we add a buffer to the model to save a pre-sampled random matrix
g so that we can achieve the same sparse sampling masks during the compress/decompress process. Besides, the order
masks are obtained with the guidance of sRGB images.

We evaluate the performance of the aforementioned strategies using the model illustrated in Sec. 2.3, i.e., the model trained
with λ = 0.5. The results are shown in Table 2. Since the proposed sRGB-guided context model is a lossless compression
model, all the competitors have exactly the same reconstruction quality. In terms of the bpp, the random sparse mask achieves
better performance compared with the deterministic mask, due to the sparsity of sampling masks, i.e., the similarity between
adjacent pixels can be better utilized. Our proposed learnable mask achieves the best performance which demonstrates the
effectiveness of the proposed pre-sampling strategy and the introduced sRGB guidance.

(a) Input
(8 bit sRGB image)

(b) InvISP [9]
(bpp: N/A)

(c) SAM [6]
(bpp: 9.52e-3)

(d) Nam et al. [5]
(bpp: 8.44e-1)

(e) Ours
(bpp: 0.2978)

(f) Raw image
(After gamma correction)

Figure 4. Qualitative comparison results on the Olympus subset of NUS dataset [2]. We visualize the maximum value of the error among
three channels on the pixel level. For better visualization, we apply gamma correction to the raw image to increase the visibility.



(a) Input
(8 bit sRGB image)

(b) InvISP [9]
(bpp: N/A)

(c) SAM [6]
(bpp: 9.52e-3)

(d) Nam et al. [5]
(bpp: 8.44e-1)

(e) Ours
(bpp: 0.3141)

(f) Raw image
(After gamma correction)

Figure 5. Qualitative comparison results on the Samsung subset of NUS dataset [2]. We visualize the maximum value of the error among
three channels on the pixel level. For better visualization, we apply gamma correction to the raw image to increase the visibility.



(a) Input 8 bit JPEG images
(quality factor 10)

(b) Nam et al. [5]
(bpp: 0.844)

(c) Ours
(bpp: 0.269)

(d) Raw image
(After gamma correction)

Figure 6. Qualitative comparison results on NUS dataset [2] in the image space. For better visualization, we apply gamma correction to
raw/reconstructed raw images to increase the visibility.
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