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Abstract

In this supplementary material, we provide the detailed
solution of pose synchronization in Sec. A.1, the implemen-
tation details in Sec. A.2, additional analysis in Sec. A.3,
the running time analysis in Sec. A.4, and more qualita-
tive results in Sec. A.6. The source code is available at
https://github.com/WHU-USI3DV/SGHR.

A.1. Pose synchronization
In this section, we provide the detailed solution of pose

synchronization in Sec. 3.3.2 of the main paper. Given the
edge weights and input relative poses {wij , Tij |(i, j) ∈ E},
we solve the transformation synchronization by dividing it
into rotation synchronization [2,9] and translation synchro-
nization [8]. In the following, our pairwise transformation
Tij = (Rij , tij) on edge (i, j) ∈ E aligns the source scan
Pj to the target scan Pi. The scan poses are assumed to be
camera-to-world matrices. Thus scans under the correctly
recovered poses {(Ri, ti)} should reconstruct the whole
scenario.

Rotation synchronization. Following [2, 6, 11], we
treat the synchronization of rotations {Ri} as an over-
constrained optimization problem:

argmin
R1,...RN∈SO(3)

∑
(i,j)∈E

wij∥Rij −RT
i Rj∥2F , (A.1)

where ∥·∥F means the Frobenius norm of the matrix. Under
the spectral relaxation, a closed-from solution of Eq. A.1
can be computed as follows [2, 6]. Consider a symmetric
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matrix L ∈ R3N∗3N containing N2 3× 3 blocks:

L =



∑
(1,j)∈E

w1jI3 −w12R12 · · · −w1NR1N

−w21R21

∑
(2,j)∈E

w2jI3 · · · −w2NR2N

...
...

. . .
...

−wN1RN1 −wN2RN2 · · ·
∑

(N,j)∈E
wNjI3


,

(A.2)
where I3 ∈ R3∗3 denotes the identity matrix. For each edge
(i, j) ∈ E , we fill −wijRij and −wijR

T
ij to the (i, j) and

(j, i) block. For unconnected edges, we set the correspond-
ing blocks to zeros.

We first calculate three eigenvectors τ1, τ2, τ3 ∈ R3N

corresponding to the three smallest eigenvalues λ1 < λ2 <
λ3 of L and stack them to form γ = [τ1, τ2, τ3] ∈ R3N∗3.
Then, vi = γ[3i − 3 : 3i] ∈ R3∗3 is an approxima-
tion of the absolute rotation Ri for point cloud Pi but may
not satisfy the constraint vivTi = I3. Therefore, we rec-
tify this by applying singular value decomposition on vi by
vi = Ui

∑
i V

T
i and deriving Ri = ViU

T
i [2]. Then, we

further check det(Ri) and exchange the first two rows of
Ri if det(Ri) = −1.

Translation synchronization. Translation synchroniza-
tion retrieves the translation vectors {ti} that minimize the
problem:

argmin
t1,...,tN∈R3

∑
(i,j)∈E

wij∥Ritij − tj + ti∥2. (A.3)

We solve it by the standard least square method [8].
Assuming E edges are connected in G, we thus construct

three matrices A, B, and H as follows. A ∈ R3E∗3E is
initialized as an identity matrix. B ∈ R3E∗3N contains E ∗
N 3 × 3 blocks and is initialized as a zero matrix. H ∈
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Figure A.1. Network architecture for global feature extraction.
“G-Conv” means group convolution defined on Icosahedral group
same as [12]. “VLAD core” is the same as [1]. For FCGF [4],
“3DConv” and “3DConvTr” denotes a sparse convolution layer
and the transpose convolution layer for upsampling, respectively.

R3E∗1 is a vector containing E 3 × 1 blocks. For the e-th
edge (i, j) ∈ E , we multiply A[3e − 3 : 3e] with wij , fill
I3 and -I3 to the (e, j) and (e, i) block of B respectively,
and fill Ritij to the e-th block of H . We thus solve t =
(BTAB)−1BTAH and obtain the translation vector ti of
each scan Pi as t[3i− 3 : 3i].

A.2. Implementation details

A.2.1. Architecture

The architecture of our global feature extraction network
is shown in Fig. A.1. We adopt YOHO with the same ar-
chitecture as [12] for 32-dim local feature extraction. More
local feature extraction details can be found in [12]. The
extracted local features are aggregated to a global feature
by a NetVLAD layer [1]. We set the number of clusters in
NetVLAD to 64 and the dimension of the global feature is
thus 2048. Please refer to [1] for more global feature aggre-
gation details.

A.2.2. Training details

We use the pretrained YOHO [12] for local feature ex-
traction and train the NetV LAD layer using the 46 scenes
in the training split of 3DMatch [15]. We adopt the follow-
ing data augmentations. For each scene in the train set of
3DMatch, we first randomly sample α ∈ [8, 60] scans as
the graph node. Then, on each scan, we randomly sample
β ∈ [1024, 5000] keypoints to extract YOHO features. The
local features of α scans are fed to NetVLAD to extract α

Overlap Estimation 3D-RR(%) 3DLo-RR(%)
Predator [7] 95.2 78.4
Ours 96.2 81.6

Table A.1. Registration recall on 3D(Lo)Match using estimated
overlap scores from Predator [7] and ours.

scan global features. Then, we compute the
(
α
2

)
overlap

scores by exhaustively correlating every two global features
and compute the L1 distance between the ground-truth over-
lap ratios and the predicted overlap scores as the loss for
training. We set the batch size to 1 and use the Adam op-
timizer with a learning rate of 1e-3. The learning rate is
exponentially decayed by a factor of 0.7 every 50 epoch. In
total, we train the NetV LAD for 300 epochs.

A.3. More analysis

A.3.1. Use Predator [7] for overlap estimation

In Table. A.1, we use the overlap scores predicted by
Predator [7] in the sparse graph construction, which yields
slightly worse results. Moreover, Predator [7] applies cross-
attention layers between local features of a scan pair to es-
timate overlap while we only need to compute a global fea-
ture for every scan and efficiently correlate the global fea-
tures to estimate overlap. In our test, the proposed method
is 10× more efficient than Predator.

A.3.2. Concurrent multiview registration works

After our submission to CVPR 2023, two concurrent
mulitview registration works are available online, namely,
SynMatch [5] and HL-MRF [13]. SyncMatch and HL-
MRF are specifically designed for registering raw RGB-
D sequences and TLS point clouds, respectively, while the
proposed method offering a more general approach. In our
test, the proposed method notably outperforms SynMatch
by 27% on the 3DMatch dataset. HL-MRF indeed performs
well on the TLS-based ETH dataset but fails on the indoor
datasets.

A.3.3. Estimated overlap vs. ground truth overlap

In Fig. A.2, each point (ogt, oest) represents a scan pair
with the ground truth overlap ratio ogt and estimated over-
lap ratio oest. The plot reveals several observations: (1)
scan pairs with larger ground truth overlaps indeed have
larger overlap scores; (2) the constructed sparse graph
mainly contains scan pairs with higher overlap ratios, as ev-
idenced by the green and red points; (3) the proposed trans-
formation synchronization algorithm further eliminates un-
reliable scan pairs effectively to achieve accurate scan
poses, as shown by the red points.



Figure A.2. Estimated overlap ratio versus the ground truth over-
lap ratio on scan pairs of the Kitchen scene of 3DMatch. “All
pairs” means all

(
N
2

)
scan pairs. “Selected pairs” means the scan

pairs selected to construct the sparse pose graph. “Final pairs”
means the scan pairs with an edge weight greater than 10−2 after
transformation synchronization.

Top- 4 6 8 10 12 15 Full
# Pair 1167 1707 2250 2798 3349 4129 11905
Sync-time (s) 20.2 30.4 37.4 54.8 66.6 90.3 405.4
3D-RR (%) 91.3 91.6 95.5 96.2 96.6 96.0 93.2
3DL-RR (%) 71.0 74.7 80.9 81.6 81.2 80.3 76.8

Table A.2. Ablation study on k in sparse graph construction.
“Full” means using fully-connected graphs. “Sync-time” means
the time for transformation synchronization.

A.3.4. Construct sparse graph with different top-k

In Table. A.2, we show the results with different k in
the sparse graph construction. Retaining too many scan
pairs with larger k may include more outliers while using
too small k could split the whole graph into several discon-
nected subgraphs. Results show that using k = 10 or 12
brings the best results.

A.3.5. Performances using different IRLS iterations

In Fig. A.3, we show the registration performance on
3D(Lo)Match with different iteration numbers. It can be
seen that the results will be better with more iterations.
However, using more iterations also costs more time. We
thus select 50 iterations for its stable performance and effi-
ciency by default.

A.4. Runtime analysis
In Table. A.3, we provide the runtime for the graph

construction and the IRLS-based transformation synchro-
nization averaged on the 8 scenes of the 3DMatch dataset.
We evaluate the runtimes on a computer with Intel(R)
Core(TM) i7-10700 CPU@ 2.90GHz with GeForce GTX
2080Ti and 64 GB RAM. Our sparse pose graph con-

Figure A.3. Results of the proposed history reweighting IRLS with
different iterations.

Method Graph Cons (s) Trans Sync (s) Total (s)
RotAvg [3] + Full 86.3 49.4 135.7
LITS [14] + Full 86.3 0.7 87.0
HARA [10] + Full 87.3 8.5 95.8
RotAvg [3] + Pruned [6] 164.1 22.6 186.7
LITS [14] + Pruned [6] 164.1 0.7 164.8
HARA [10] + Pruned [6] 164.8 7.5 172.4
Ours 20.0 6.9 26.8

Table A.3. Detailed time consumption for registering a scene on
3DMatch. “Graph Cons” means the time for constructing the input
pose graph. “Trans Sync” means the time for IRLS-based trans-
formation synchronization.

Figure A.4. A failure case in ScanNet. (a) The ground truth mul-
tiview registration (30 scans). (b) The multiview registration from
the proposed method.

struction is nearly 67s faster than baselines for conducting
much fewer pairwise registrations. In total, our method is
61s ∼ 160s faster than baselines for registering a scene in
3DMatch.

A.5. Limitations
When the overlap ratios of two scans are too small and

there are no other scans which forms a cycle with these two
scans, our method may fail in this case. A typical example
is shown in Fig. A.4, where overlap region in the red rectan-
gle is very small and mainly consists of feature-less planar
points. In this case, our method fails to register the whole
scene but separately recover poses on two subgraphs. This
also shows that our method may have the potential to auto-
matically separate scans from two different scenes, which is



beyond the discussion of this paper.

A.6. More qualitative results

We provide additional qualitative results including suc-
cess cases (Fig. A.5 and Fig. A.6) and failure cases
(Fig. A.7). We also compare our results with the registra-
tion results of RotAvg [3], HARA [10], and LITS [14]. The
failure of our method occurs when some overlap regions
mainly contain the repetitive structures (top of Fig. A.7) or
feature-less regions (bottom of Fig. A.7).
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Figure A.5. Registration results of our method, RotAvg [3], HARA [10], and LITS [14] on the 3DMatch dataset and the ETH dataset. Top:
the Home1 scene of 3DMatch. Bottom: the Wood Summer scene of ETH.



Figure A.6. Registration results of our method, RotAvg [3], HARA [10], and LITS [14] on scenes of ScanNet dataset including
Scene0309 00 (top), Scene0286 02 (middle), and Scene0265 02 (bottom).



Figure A.7. Registration results of our method, RotAvg [3], HARA [10], and LITS [14] on 3DMatch (top: Studyroom) and ScanNet
(bottom: Scene0334 02). Our method fails to register the scans in the red boxes due to repetitive structures and feature-less regions.
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