
Appendix
• In Sec. A1, we provide diffusion models from a score-based perspective following Karras et al. [20].

• In Sec. A2, we provide additional experiments on our approach, including additional ablation study, qualitative results,
and video results.

• In Sec. A3, we document implementation details.

Algorithm 1 Training
1: repeat
2: x ⇠ pdata

3: � ⇠ [�min,�max]
4: z ⇠ N (0, I)
5: Take gradient descent step on

r� kD�(x+ �z, �)� xk2
6: until converged
7: score(x,�) = rx log p�(x) = (D�(x,�)� x)/�2

Algorithm 2 Deterministic Sampling

1: {�i}Ti=1 descending; �0 = 0
2: xT = �Tz, z ⇠ N (0, I)
3: for t = T, . . . , 1 do
4: xt�1 = xt + (�t � �t�1) · �t · score(xt,�t)

5: = (1� wt)xt + wtD�(xt, �t)| {z }
weighted average

wt =
�t��t�1

�t

6: return x0

Figure A1. Training and Sampling Algorithm Card for Score-Based Methods with numerical scaling s(t) = 1 and �(t) = t. Note that
the inference step is analogous to DDIM [52], and simplifies to a weighted averaging between the current iterate xt and the denoiser
output D(xt,�t). This particular scheduling allows for taking large step sizes, and a sample can be generated in as few as 80 network
evaluations [20] while maintaining high image quality.

A1. Diffusion Models from Score-Based Perspective
We provide a more detailed recap of diffusion models from the score-based perspective. For a quick overview, we summarize

the training and deterministic sampling algorithms in Fig. A1; the deterministic sampling algorithm can be made stochastic by
adding noise and adjusting � level after each update (details see Karras et al. [20]).

In the following analysis we assume that each dimension of the random vector x is independent, and that the variance in
each dimension is 1. The general form of the forward noising step of a diffusion model can be described as scaling and adding
noise, i.e.

xt = s(t)x0 + s(t)�(t)z, (28)

where z ⇠ N (0, I) and x0 is a sample drawn from data distribution. s(t) and �(t) are user-defined coefficients. Here the
coefficient on noise z is parameterized as the product of s(t) and �(t) so that �(t) represents the noise-to-signal ratio in xt.

SMLD [53, 54], DDIM [52] and Karras [20] sets scaling, i.e. s(t) = 1, and therefore adding noise by x0 + �(t)z would
cause xt to numerically get larger as t increases. DDPM on the other hand introduced rapidly decreasing s(t) to scale down the
successive xt so that at any time t, pt(x) has variance fixed at 1. This goal of maintaining a standard deviation 1 requires that

Var[xt] = Var[s(t)x0] + Var[s(t)�(t)z] (29)
s(t)2 Var[x0]| {z }

=I

+s(t)2�(t)2 Var[z]| {z }
=I

= I (30)

s(t)2 + s(t)2�(t)2 = 1 (31)

�(t) =

s
1� s(t)2

s(t)2
(32)

DDPM specifies the s(t) by a set of �t, i.e., s(t) =
p
↵̄t =

qQ
it ↵i =

qQ
it(1� �i) , and therefore �(t) =

q
1�↵̄t
↵̄t

.

The noising step (28) describes the marginal distribution at pt(x). The infinitesimal time evolution of this process can be
written as the following stochastic differential equation [55]:

dx = f(t)x dt+ g(t) d!t where f(t) =
ṡ(t)

s(t)
g(t) = s(t)

p
2�̇(t)�(t). (33)

Fokker-Planck equation [32] states that a stochastic differential equation of the form (33) is identified with a partial differential
equation describing the marginal probability density distribution pt(x)

dx = f(x, t) dt+ g(t) d!t !
@pt(x)

@t
= �r ·


f(x, t) pt(x)�

g(t)2

2
rxpt(x)

�
. (34)

Applying this identity tells us that a stochastic differential equation like (33) implies a deterministic, ordinary differential
equation. Here we illustrate the proof schematically:

dx = f(t)x dt+ g(t) d!t| {z }
stochastic

@pt(x)
@t = �r ·

h
f(t)x pt(x)� g(t)2

2 rxpt(x)
i

dx =
✓
f(t)x� g(t)2

2
rx log pt(x)

◆
dt+ 0d!t

| {z }
deterministic

@pt(x)
@t = �r ·

✓
f(t)x� g(t)2

2
rx log pt(x)

◆
pt(x)� 0

�

FP

implies
equal (by log derivative trick; expanded below)

FP

(35)

The application of the log derivative trick is expanded below:

@pt(x)

@t
= �r ·


f(t)x pt(x)�

g(t)2

2
rxpt(x)

�
(36)

= �r ·
"
f(t)x pt(x)� g(t)2

2 rxpt(x)

pt(x)
pt(x)

#
(37)

= �r ·

2

6664

0

BBB@
f(t)x� g(t)2

2

rxpt(x)

pt(x)| {z }
log derivative

1

CCCA
pt(x)

3

7775
(38)

= �r ·
✓

f(t)x� g(t)2

2
rx log pt(x)

◆
pt(x)

�
. (39)

Substituting the expression for f(t) and g(t) from (33), we obtain an ODE from which we can sample the data by applying
the score function with a step schedule that theoretically guarantees to take us back to initial, clean data distribution

dx =
ṡ(t)

s(t)
x� 1

2

⇣
s(t)

p
2�̇(t)�(t)

⌘2
rx log pt(x) dt (40)

dx =
ṡ(t)

s(t)
x� s(t)

�̇(t)

�(t)

✓
D(x/s(t);�(t))� x/s(t)

◆
dt . (41)

When s(t) = 1, �(t) = t, the above simplifies to

dx = ��t ·
D(x;�t)� x

�2
t

dt (42)

dx = ��t · score(x,�t) dt (43)

Note that this schedule with s(t) = 1, �(t) = t allows for taking large step sizes during inference since it introduces no
extra curvature in the trajectory beyond what’s induced by the score function itself. The discretized sampling algorithm of
equation (43) is described in Fig. A1.

A high quality photo of french fries from McDonald’s

a DSLR photo of a rose

No center depth loss With center depth loss (weight = 100)

Figure A2. Ablation experiments on the proposed center depth loss. Each pair of corresponding columns of the same prompt are visualized
from the same camera angle.

A2. Additional Experiments
Ablation on center depth loss. In Fig. A2, we illustrate the effect of the center depth loss proposed in Eq. (27). Without the
center depth loss, we observe that some objects, e.g., French Fries, are placed far from the center of the scene box and tend to
drift around when the camera viewpoints are changed. This effect is more pronounced in the provided video result. In contrast,
a moderate center depth loss forces the object to be placed at the scene box center. Additionally, we observe that the objects
tend to be enlarged to occupy more of the visible screen space without wasting model capacity.

Additional qualitative results. We provide additional qualitative results from SJC in Fig. A3. Note that we increase the
resolution of the depth maps beyond the 64⇥ 64 resolution of the image latents by rendering subpixel rays. In general, we
observe that the volumetric renderer is powerful enough to hallucinate shadows (horse), water surfaces (Sydney opera house,
duck), grasslands (zebra) and even a traffic lane (school bus), using the volume densities.

Video results. We have attached numerous video results in the project website, and named each file after the text prompt used
to generate the 3D asset. In addition, we included the videos for the ablation experiments in Fig. 7 and Fig. A2.

A3. Implementation Details
3D scene setup. Our voxel grids are of size 1003, and placed at world origin with a normalized side length [�1, 1]3. We sample
cameras uniformly on a hemisphere that covers the voxel cube with a radius of 1.5, with look-at directions pointing at the origin.
The camera field of view is randomly sampled from 40 degrees to 70 degrees during optimization, and fixed to 60 degrees at
test time. We found the jittering on FoV to help with 3D optimization in some cases, and this data augmentation technique is
reported in DreamFusion [43]. Our scene background consists of an optimizable image of size 4⇥ 4 environment-mapped to
the spherical surface by azimuth and elevation angles of the incoming ray. The small image size with constrained capacity
helps to avoid confounding visual artifacts accumulating in the background during optimization.

Optimization. We use Adamax [24] optimizer and perform gradient descent at a learning rate of 0.05 for 10, 000 steps, with
some prompts running at a longer schedule for better quality. Note that when performing gradient descent with PAAS, we
implicitly rely on the optimizer’s momentum state to perform the averaging. We have tried explicitly averaging the scores at
multiple noise perturbations, but observed no clear benefits or degradation. The language-guidance scale is set to 100. Our
system consumes 9GB of GPU memory during optimization, and takes approximately 25 minutes on an A6000 GPU including
the time spent on miscellaneous tasks like visualization.

View-dependent prompting. An influence of DreamFusion [43] on our work is the use of view-dependent prompting.
Language prompts are prepended with one of the following: “overhead view of”, “front view of”, “backside view of”, “side
view of” depending on the camera location. More specifically, when camera elevation is above 30 degrees we use the “overhead

view” prompt. Otherwise, the prompts are assigned based on the azimuth quadrant the camera falls into. This technique helps
to alleviate the degeneracy of multiple frontal faces being painted around an object during optimization. We hope as part of our
future work to develop a more general solution to induce the optimization towards more plausible geometry without using
language as guidance.

Trump figure

Obama figure

Biden figure

Zelda Link

A product photo of a Canon home printer

A pig

A photo of a zebra walking

A wide angle zoomed out photo of Saturn V rocket from distance

A high quality photo of a yellow school bus

Figure A3. Additional results of text-prompted generation of 3D models with SJC.

	. Introduction
	. Related Works
	. Preliminaries
	. Score Jacobian Chaining for 3D Generation
	. Computing 2D Score on Non-Noisy Images
	. Inverse Rendering on Voxel Radiance Field
	. SJC vs. DreamFusion

	. Experiments
	. Validating PAAS on 2D images.
	. 3D Generation

	. Conclusion
	. Diffusion Models from Score-Based Perspective
	. Additional Experiments
	. Implementation Details

