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1. Audio Encoder Architecture
The details of the audio encoder to extract a local audio

embedding given a spectrogram of a 0.2-second audio seg-
ment are shown in Tab. 1. Specifically, layers between two
lines compose a block whose input and output are summed
up via a residual connection. Meanwhile, batch normaliza-
tion is applied after each of the convolutional layers.

Table 1. Audio encoder architecture. All parameters listed in the
‘Filters’ column are kernel sizes, output channels, strides, padding,
and repetition of layers.

Layer Type Filters Output dim.

Conv 2D {[3, 3], 32, [1, 1], 1} × 1 32×80×16
Conv 2D {[3, 3], 32, [1, 1], 1} × 2 32×80×16

Conv 2D {[3, 3], 64, [3, 1], 1} × 1 64×27×16
Conv 2D {[3, 3], 64, [1, 1], 1} × 2 64×27×16

Conv 2D {[3, 3], 128, [3, 3], 1} × 1 128×9×6
Conv 2D {[3, 3], 128, [1, 1], 1} × 2 128×9×6

Conv 2D {[3, 3], 256, [3, 2], 1} × 1 256×3×3
Conv 2D {[3, 3], 256, [1, 1], 1} × 1 256×3×3

Conv 2D {[3, 3], 512, [1, 1], 0} × 1 512×1×1
Conv 2D {[1, 1], 512, [1, 1], 0} × 1 512×1×1

2. Audio Transformer Encoder Architecture
The audio transformer encoder is used to extract

phoneme-level information in speech considering the global
temporal dependency, namely global audio embeddings.
We use speeches with varying lengths as the input to the
transformer encoder. In practice, a speech is preprocessed
to a spectra S ∈ RT×F , where T and F are the numbers of
frames and filter banks. Then, every 4 frames are stacked
into one frame. Herein, F is fixed to 26.

There are 12 cascaded transformer blocks in the trans-
former encoder. The hidden layer dimension, feed-forward
layer dimension and the number of attention heads are set
to 768, 3072 and 12, respectively. Thus, the output of the

transform encoder is denoted as Z ∈ R(T/4)×768. After-
wards, we take one frame of Z, which is timely aligned
with the pose reference, as the global audio embedding.

3. Video Encoder Architecture
We use a video encoder to extract the identity and pose

information to a united visual embedding from a concate-
nation (6×96×96) of an identity and a pose image. Tab. 2
illustrates the detailed architecture.

Table 2. Video encoder architecture. All parameters listed in the
‘Filters’ column are kernel sizes, output channels, strides, padding,
and repetition of layers.

Layer Type Filters Output dim.

Conv 2D {[7, 7], 16, [1, 1], 3} × 1 16×96×96

Conv 2D {[3, 3], 32, [2, 2], 1} × 1 32×48×48
Conv 2D {[3, 3], 32, [1, 1], 1} × 2 32×48×48

Conv 2D {[3, 3], 64, [2, 2], 1} × 1 64×24×24
Conv 2D {[3, 3], 64, [1, 1], 1} × 3 64×24×24

Conv 2D {[3, 3], 128, [2, 2], 1} × 1 128×12×12
Conv 2D {[3, 3], 128, [1, 1], 1} × 2 128×12×12

Conv 2D {[3, 3], 256, [2, 2], 1} × 1 256×6×6
Conv 2D {[3, 3], 256, [1, 1], 1} × 2 256×6×6

Conv 2D {[3, 3], 512, [2, 2], 1} × 1 512×3×3
Conv 2D {[3, 3], 512, [1, 1], 1} × 1 512×3×3

Conv 2D {[3, 3], 512, [1, 1], 0} × 1 512×1×1
Conv 2D {[1, 1], 512, [1, 1], 0} × 1 512×1×1

4. Generator Architecture
The details of the generator to synthesize a face image

based on the concatenated audio and video embedding are
provided in Tab. 3:

Besides, the skip connection like Unet [1, 2] is applied.
Particularly, hidden features in the generator are concate-
nated with hidden features in the video encoder with the
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Table 3. Generator architecture. All parameters listed in the ‘Fil-
ters’ column for Conv2D are kernel sizes, output channels, strides,
padding, and repetition of layers. Conv 2D T. means 2D trans-
posed convolutional layers which has an extra parameter called
output padding, placed after the padding parameter.

Layer Type Filters Output dim.

Conv 2D {[1, 1], 512, [1, 1], 0} × 1 512×1×1

Conv 2D T. {[3, 3], 512, [2, 2], 0, 0} × 1 512×3×3
Conv 2D {[3, 3], 512, [1, 1], 1} × 1 512×3×3

Conv 2D T. {[3, 3], 512, [2, 2], 1, 1} × 1 512×6×6
Conv 2D {[3, 3], 512, [1, 1], 1} × 2 512×6×6

Conv 2D T. {[3, 3], 384, [2, 2], 1, 1} × 1 384×12×12
Conv 2D {[3, 3], 384, [1, 1], 1} × 2 384×12×12

Conv 2D T. {[3, 3], 256, [2, 2], 1, 1} × 1 256×24×24
Conv 2D {[3, 3], 256, [1, 1], 1} × 2 256×24×24

Conv 2D T. {[3, 3], 128, [2, 2], 1, 1} × 1 128×48×48
Conv 2D {[3, 3], 128, [1, 1], 1} × 2 128×48×48

Conv 2D T. {[3, 3], 64, [2, 2], 1, 1} × 1 64×96×96
Conv 2D {[1, 1], 64, [1, 1], 1} × 2 64×96×96

Conv 2D {[3, 3], 32, [1, 1], 1} × 1 32×96×96
Conv 2D {[1, 1], 3, [1, 1], 0} × 1 3×96×96

same shape.

5. Discriminator Architecture

The details of the discriminator to penalize unrealistic
synthesized face images are provided in Tab. 4. The dis-
criminator only takes the lower half of faces as inputs.

6. Qualitative Ablation Study on Contrastive
Learning

Our experiments have confirmed that contrastive learn-
ing is effective in lip-speech synchronization, which also
improves reading intelligibility. In this section, we visual-
ize audio embeddings of the pairs of ‘Around’ and ‘Ground’
which is one of the most frequently confused word pairs [3].

As shown in Fig. 1, although audio embeddings of two
words by the TalkLip (l + c) are still not separated, the lower
half of Fig. 1b is mainly composed by red points, which is
much better than the TalkLip (l).

Besides, we provide some figures to conduct a qualitative
analysis. As shown in Fig. 2, it is observed that the TalkLip
(l + c) is better than Prop. (l) with the help of contrastive
learning. Especially the fourth image (in the blue box) of
the TalkLip (l) is a little ahead of the ground truth. The
fourth image of the TalkLip (l + c) is more synchronized
than that of the TalkLip (l) with the ground truth.

Table 4. Audio encoder architecture. All parameters listed in the
‘Filters’ column are kernel sizes, output channels, strides, padding,
and repetition of layers.

Layer Type Filters Output dim.

Conv 2D {[7, 7], 32, [1, 1], 3} × 1 32×48×96

Conv 2D {[5, 5], 64, [1, 2], 1} × 1 64×48×48
Conv 2D {[5, 5], 64, [1, 1], 2} × 1 64×48×48

Conv 2D {[5, 5], 128, [2, 2], 2} × 1 128×24×24
Conv 2D {[5, 5], 128, [1, 1], 2} × 1 128×24×24

Conv 2D {[5, 5], 256, [2, 2], 2} × 1 256×12×12
Conv 2D {[5, 5], 256, [1, 1], 2} × 1 256×12×12

Conv 2D {[5, 5], 512, [2, 2], 2} × 1 512×6×6
Conv 2D {[5, 5], 512, [1, 1], 2} × 1 512×6×6

Conv 2D {[3, 3], 512, [2, 2], 1} × 1 512×3×3
Conv 2D {[3, 3], 512, [1, 1], 1} × 1 512×3×3

Conv 2D {[3, 3], 512, [1, 1], 0} × 1 512×1×1
Conv 2D {[1, 1], 512, [1, 1], 0} × 1 512×1×1

(a) TalkLip (l) (b) TalkLip (l+c)

Figure 1. The t-SNE visualization of audio embeddings corre-
spond to ‘Around’ (red) and ‘Ground’ (blue).

a) TalkLip (l)

b) TalkLip (l+c)

c) Ground Truth

Figure 2. Snapshots of the generated talking face videos to demon-
strate the benefit of the contrastive learning.



Figure 3. The t-SNE visualization of global audio embeddings
correspond to ‘Around’ (red) and ‘Ground’ (blue).

a) TalkLip (l+c)

b) TalkLip (g+c)

c) Ground Truth

Figure 4. Snapshots of the generated talking face videos to demon-
strate the benefit of using the transformer encoder which extracts
the global audio embedding.

7. Qualitative Ablation Study on Global Audio
Embedding

To show a better representation of global audio embed-
dings in phoneme-level information, we visualize their dis-
tributions of ‘Around’ and ‘Ground’ in Fig. 3. It is observed
that global audio embeddings are more separable than local
audio embeddings as shown in Fig. 1. Besides, We show
an image comparison between the TalkLip (g + c) and the
TalkLip (l + c) as Fig. 4. It is observed that the lip move-
ment of the TalkLip (g+c) is fuller than the TalkLip (l+c),
which confirms the benefit of the global audio embedding.

8. LSE-D

LSE-D [2] is another metric to measure lip-speech syn-
chronization. We provide a comparison of LSE-D in Tab. 5.
We can observe that LSE-D also confirms the SOTA perfor-
mance of TalkLip (g + c) on lip-speech synchronization.

Table 5. LSE-D results on LRW and LRS2. Performances of
methods with * are collected from [4] which are trained using the
whole LRS2 dataset (224 hours) while our methods are trained by
the LRS2 dataset (29 hours).

LRW LRS2

Ground Truth 6.97 6.45
ATVGnet 8.56 8.65
Wav2Lip 7.01 6.58

Faceformer 8.00 7.80
PC-AVS* 7.34 7.30

SyncTalkFace* 6.97 6.26
TalkLip (l) 7.00 6.63

TalkLip (l + c) 7.00 6.56
TalkLip (g) 6.75 6.01

TalkLip (g + c) 6.51 6.00

9. Limitation
In the Fig. 1 of the main body, it is observed that our

methods do not help improve visual quality. The lip-reading
loss does not direct a better visual quality since PSNR and
SSIM of the TalkLip (l) and the Base w.o. Llip are very
close. Contrastive learning and the global audio encoder
also do not boost visual quality as all four TalkLip nets
show similar PSNR and SSIM. We will explore methods
of improving visual quality in our further work.

10. Qualitative Result
In this section, we provide more qualitative comparisons

with 3 State-of-Arts methods: ATVGnet [5], Wav2Lip [2],
Faceformer [6] to show the superiority of our proposal.
Please see details in Fig. 5-8.



(a) Ground Truth

(b) ATVGnet

(c) Wav2Lip)

(d) Faceformer

(e) TalkLip (g + c)

Figure 5. Qualitative comparison.

(a) Ground Truth

(b) ATVGnet

(c) Wav2Lip)

(d) Faceformer

(e) TalkLip (g + c)

Figure 6. Qualitative comparison.

(a) Ground Truth

(b) ATVGnet

(c) Wav2Lip)

(d) Faceformer

(e) TalkLip (g + c)

Figure 7. Qualitative comparison.

(a) Ground Truth

(b) ATVGnet

(c) Wav2Lip)

(d) Faceformer

(e) TalkLip (g + c)

Figure 8. Qualitative comparison.
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